NEW CAR PARK

at

FAIRFIELDS SCHOOL

TRINITY AVENUE, NORTHAMPTON, NN2 6JN

PLANNING STATEMENT

Job No. 5/14

12th November 2014

1.0 INTRODUCTION

The following statement accompanies a Full Planning Application dated 12th November 2014 under Regulation 3, Northamptonshire County Council being the owner of the School.

Featherstone Austin Woodward Architects, the Agent, were commissioned directly by Fairfields School to design and procure the facility.

Fairfields School is a self-governing school who educate children with special needs of all types.

Drawing 5/14-01A shows the proposal.

2.0 THE SITE

The site comprises some 3150m² of grass to the west of the School, an existing access road and an existing hard paved tennis court which has been used as a car park for a considerable time.

The grassed area has not been used as a play area for an unspecified time and currently not so, due to the nature of the School.

Any outside play is confined to a fenced play area in front of the School buildings to the east.

The Schools memorial garden borders the site to the east.

Nigel A Woodward BA Hons (Sheffield) Dip Arch RIBA
The site is screened from Trinity Avenue by mature trees and a fence, and rises gently up from the road to the School buildings.

The outlook from the site to the west is over a large illuminated car park serving the Malcolm Arnold Academy.

The site is screened by mature trees and hedging to the flanking housing to the north, and the Bethany Homestead complex to the south.

The mature trees on the site will not be affected by the works however any deemed vulnerable to damage from any construction vehicles will be screened with secure fencing.

3.0 JUSTIFICATION

Due to the nature of the Schools activities there is a larger than average staff to pupil relationship.

Whilst many of the pupils are bussed to the School, with buses delivering pupils at the drop-off directly in front of the School secure compound, direct access by both parents and staff is an essential and necessary function in the running of the School.

Currently staff park randomly over the grassed area, and similarly parents at drop off and collection times.

Some 60 vehicles, randomly parked on the grass, have been observed by the Architects on two counts.

This again is unacceptable both from a convenience and safety point of view in wet conditions, and safety with respect to traffic management both within the site and an orderly egress from the site.

A hard paved area is required.

4.0 DESIGN

A simple, economic, tarmacadam area is proposed with flat kerbed perimeter incorporating the existing car park which is to be resurfaced.

Existing levels will be followed with natural drainage to a ‘bush’ open soakaway, a sustainable solution cutting run-off to the west.

The existing trees and perimeter fence will soften the impact of the car park to Trinity Avenue.

Car park bays will be delineated with ‘Tee’ markings to again soften the overall impact.
5.0 **LIGHTING**

It is proposed to light the car park with pole mounted floodlights.

Appended is a lighting scheme prepared by Tamlite Lighting (Technical), which takes due cognisant of the *Northampton Borough Council advisory note ‘Light Pollution’* vis:

- Luminaires will be positioned and angled downwards thus minimising upward light spill.
- Time clocks will be used with lighting generally in winter from 7.30am until 9.00am, and 3.30pm to 5.30pm.
- The scheme is designed for a minimum average lux level of 15 lux as BS5489 appropriate to Environmental Zones E1 and E2 – Rural Locations.
- LED low voltage, high efficiency fittings are proposed being the most sustainable solution.

The incorporation of a lighting scheme will make the car park safer in the hours of darkness and assist with opportunist crime – theft and vandalism in line with *saved Policy E40 – Crime and Vandalism of the Northampton Local Plan*.

6.0 **PLANNING JUSTIFICATION**

The application should be viewed and determined in line with current planning legislation.

The nature of the application is of a minor and somewhat domestic nature, relating more to a specific established use and will have little effect on the surrounding built form or land use of the neighbourhood however:

National Planning Policy Framework 2012

This is now the most relevant document, the Northampton Local Plan being defunct and its successor the West Northamptonshire Core Spatial Strategy being more relevant to large scale planning issues, although reference is also made to this.

NPPF sets out in Section 17 twelve core planning principles, the relevant being:

- The desire to create sustainable development – Fairfields School is a well established local facility offering a very special service to the local and town-wide community.

 Every opportunity should be afforded to ensure their facilities are first rate and will be sustainable in the future.

- The car park will secure a good standard of amenity for all existing and future occupants of the building.
- The character of the area is that of large scale educational buildings, the Malcolm Arnold Academy with associated car parking to the road frontage, and suburban housing to the north.

The large scale trees to both front and north side along with the car park being well set back will ensure that this character remains.

- In terms of land use it is acknowledged that green space is lost by the development.

The immediate existing grassed area of the site, is some 4280m² of which 1155m² will be taken up by the car park.

This represents a loss of 27% of the grass area which is underutilised and redundant to the current activities of the School.

Given the need for the car park the benefits of the proposed development out-way the 27% loss of open grass which is not, in any event used by the School or available to the general public.

Saved Policy E20 of the Northampton Local Plan (Design)

This deals with the design of the proposal and its effect on the neighbourhood.

As before the car park will be insignificant with respect to views into the site and the streetscape will remain unaffected.

Traffic generation will not be increased.

Saved Policy E40 of the Northampton Local Plan (Crime & Vandalism)

The car park, with occasional amenity lighting is in accordance with the Policy’s requirements and will assist in deterring anti-social behaviour.

West Northamptonshire Core Spatial Strategy

S10

The overall sustainability of the activity will be enhanced by the development.

Sustainability in construction terms will be achieved by utilisation of appropriate materials and construction methods i.e.

- Recycled aggregates/binders as available (RAP)
- Rescreening and recycling arisings (top soil).

C2

Seeks to encourage modal shifts in transport to and from the School by way of public transport.

This is not an available option as stated previously.
7.0 **ENVIRONMENTAL IMPACT**

There will be no increase in traffic movements to the site.

A more structured management of vehicles within the site will assist in a more controlled access to, and egress from the site.

There will be no impact on both flora and fauna – except cats! – and the memorial garden will not have cars parking alongside to the west which currently is the case, to the detriment of this important and poignant feature of the School.

Any associated rainwater runoff will be cut by the ‘bush drain’.

8.0 **CONCLUSION**

Given the foregoing, the proposal addresses current and future shortcomings on the site, it will have little or no impact on the surrounding neighbourhood and streetscape, it will not generate any additional traffic movements, and thus falls in line with current planning legislation.
Tamlite Technical Department: Total Quantity Schedule

Project Title: Fairfields School Car Park
Customer: Featherstone Austin Woodward Architects
Date: 29 - October - 2014
Prepared by: Tom Francis

<table>
<thead>
<tr>
<th>Key/Legend</th>
<th>Qty</th>
<th>Tamlite Factory</th>
<th>Tamlite Part Number / Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>SDE150MBI</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>TCGA1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>X</td>
<td>TF2AB/89</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>X</td>
<td>TC6M/HD + TMS/CO/3CORE</td>
</tr>
<tr>
<td>Option 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>EXPMG120FL</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>TCGA1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>X</td>
<td>TF2AB/89</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>X</td>
<td>TC6M/HD + TMS/CO/3CORE</td>
</tr>
</tbody>
</table>

Note: All Qty's shown are strictly budgetary at this stage, subject to fully scaled drawings (AutoCAD preferably) being submitted. All luminaires used are subject to approval/certification of client/end user.

Note: Tamlite Vision controls requires a professional on-site commissioning service to enable correct operation of all presence/daylight sensors. Any savings outlined in the energy saving calculations will only be achieved upon the completion of this service. The costs quoted for this include setting of all necessary parameters required to allow for correct presence and/or daylight sensitivity at all times of the day/year.
Tamlite, MARINER (IEXPMG120FL)

.3 Data sheet

Manufacturer: Tamlite

IEXPMG120FL EXTERIOR - Floodlights MARINER
TAMLITE X.L.P MARINER
Exterior - Floodlights
Marine grade LED floodlight

Features
- Available in 10W to 120W
- 5 years, 50,000 hour warranty
- Neutral white colour temperature (4500K)
- Simple access for cabling
- Adjustable bracket
- IP65

Construction
- Marine grade aluminium body

To order / specify
Marine grade aluminium LED floodlight
as per Tamlite 'MARINER' range.

Dimensions (mm)
A 314
B 218
C 60

Luminaire data
Luminaire efficiency : 100%
Luminaire efficacy : 66.67 lm/W
Classification : A50 ↓100.0% ↑0.0%
CIE Flux Codes : 37 94 100 100 100
UGR 4H 8H (20%, 50%, 70%)
C0 / C90 : 26.5 / 24.5
Control gear : electronic ballast
System power : 120 W
Length : 405 mm
Width : 340 mm
Height : 125 mm

Equipped with
Quantity : 1
Designation : 120W LED
Power : 120 W
Colour : 6500K
Luminous flux : 8000 lm
Tamlite, MARINER (IEXPMG120FL)

Data sheet
Description, Fairfields

4 Floor plan
Summary, Fairfields (Copy of)

.10 Result overview, Evaluation area 1

General
Calculation algorithm used
photometric centre height.
Maintenance factor
Average indirect fraction
6.04 m
0.80
Total luminous flux of all lamps
80000 lm
Total power
1200.0 W
Total power per area (1796.19 m²)
0.67 W/m² (3.24 W/m²/100lx)

Evaluation area 1

<table>
<thead>
<tr>
<th>Em</th>
<th>Emin</th>
<th>Emin/Eav (Uo)</th>
<th>Emax/Emax (Ud)</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.6 lx</td>
<td>4.5 lx</td>
<td>0.22</td>
<td>0.06</td>
<td>0.00 m</td>
</tr>
</tbody>
</table>

Reference plane 1.1
Horizontal

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Make</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamlite</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Order No.</td>
<td>: IEXPMG120FL</td>
<td></td>
</tr>
<tr>
<td>Luminaire name</td>
<td>: MARINER</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>: 1 x 120W LED 120 W / 8000 lm</td>
<td></td>
</tr>
</tbody>
</table>
Calculation results, Fairfields(Copy of)

Table, Reference plane 1.1 (E)

<table>
<thead>
<tr>
<th>[m]</th>
<th>50</th>
<th>45</th>
<th>40</th>
<th>35</th>
<th>30</th>
<th>25</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>8.2</td>
<td>10.4</td>
<td>9.7</td>
<td>8.4</td>
<td>7</td>
<td>6.3</td>
<td>6.1</td>
</tr>
<tr>
<td>28.6</td>
<td>36.8</td>
<td>28.4</td>
<td>19.6</td>
<td>13.7</td>
<td>10.8</td>
<td>10.6</td>
<td>12.5</td>
</tr>
<tr>
<td>29.3</td>
<td>61</td>
<td>43.4</td>
<td>26.7</td>
<td>16.8</td>
<td>13.2</td>
<td>13</td>
<td>16.3</td>
</tr>
<tr>
<td>26.1</td>
<td>60.9</td>
<td>46.1</td>
<td>26.5</td>
<td>17.7</td>
<td>13.8</td>
<td>14.8</td>
<td>19.8</td>
</tr>
<tr>
<td>27.9</td>
<td>38.4</td>
<td>30.6</td>
<td>20.5</td>
<td>14.9</td>
<td>12.8</td>
<td>13.9</td>
<td>18.4</td>
</tr>
<tr>
<td>13.1</td>
<td>21.4</td>
<td>19.4</td>
<td>15.3</td>
<td>12.5</td>
<td>11.2</td>
<td>11.8</td>
<td>14.6</td>
</tr>
<tr>
<td>8.6</td>
<td>13.2</td>
<td>14.3</td>
<td>12.4</td>
<td>10.9</td>
<td>10.2</td>
<td>10.4</td>
<td>11.6</td>
</tr>
<tr>
<td>8.2</td>
<td>12.4</td>
<td>13.2</td>
<td>12</td>
<td>10.6</td>
<td>9.8</td>
<td>9.5</td>
<td>9.8</td>
</tr>
<tr>
<td>13.2</td>
<td>17.2</td>
<td>16.3</td>
<td>14</td>
<td>11.8</td>
<td>10.4</td>
<td>9.7</td>
<td>9.4</td>
</tr>
<tr>
<td>24</td>
<td>29.5</td>
<td>24.6</td>
<td>18</td>
<td>14.2</td>
<td>12.2</td>
<td>11</td>
<td>10.3</td>
</tr>
<tr>
<td>36</td>
<td>53.5</td>
<td>39.1</td>
<td>25.8</td>
<td>18</td>
<td>15</td>
<td>13.6</td>
<td>12.8</td>
</tr>
<tr>
<td>26.9</td>
<td>71.6</td>
<td>48.7</td>
<td>28.6</td>
<td>20.7</td>
<td>18.6</td>
<td>18.3</td>
<td>17.7</td>
</tr>
<tr>
<td>29.6</td>
<td>48.5</td>
<td>35.7</td>
<td>23.7</td>
<td>20.3</td>
<td>21.9</td>
<td>26.1</td>
<td>27.9</td>
</tr>
<tr>
<td>17.8</td>
<td>26</td>
<td>21.4</td>
<td>16.7</td>
<td>16.1</td>
<td>24.3</td>
<td>36.8</td>
<td>44.8</td>
</tr>
<tr>
<td>8</td>
<td>13.5</td>
<td>12.4</td>
<td>10.6</td>
<td>10.4</td>
<td>18</td>
<td>34.6</td>
<td>38.7</td>
</tr>
<tr>
<td>39.6</td>
<td>38.9</td>
<td>25.4</td>
<td>20.1</td>
<td>21.8</td>
<td>25.9</td>
<td>31.9</td>
<td>29.2</td>
</tr>
<tr>
<td>22.9</td>
<td>25.6</td>
<td>22.5</td>
<td>20.9</td>
<td>26.8</td>
<td>38.4</td>
<td>47.1</td>
<td>44.3</td>
</tr>
<tr>
<td>6.2</td>
<td>11.9</td>
<td>14.8</td>
<td>18.2</td>
<td>27.9</td>
<td>42.9</td>
<td>25.6</td>
<td>31.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Illuminance [lx]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Height of the reference plane	0.00 m	
Average illuminance	Eav	20.6 lx
Minimum illuminance	Emin	4.5 lx
Maximum illuminance	Emax	71.6 lx
Uniformity Uo	Emin/Eav	1 : 4.58 (0.22)
Diversity Ud	Emin/Emax	1 : 15.90 (0.06)
.12 3D luminance, View 1

Luminance in the scene
Minimum: 0 cd/m²
Maximum: 4.49 cd/m²