This section outlines the contractor’s [Galliford Try Construction] initial site management plan for the delivery of the new accommodation block and associated works at Kings Heath Primary School. It should be noted that Galliford Try successfully completed works to the school a few years ago, and therefore have very specific knowledge of building on this particular school site, as well as extensive experience of working on other ‘live’ school sites in the Northampton area.

This is a preliminary view of Galliford Try’s approach to delivering the scope of works outlined below and is based on their observation of the School site and its operation. It is intended to demonstrate in brief our approach and consideration given to the safe delivery of the project within the confines of an existing, live school environment and its surrounding environs. Prior to commencement Galliford Try’s detailed proposal for the delivery of the works will be developed into a full Construction Phase Health and Safety Plan, detailed Risk Assessment and Method Statements according to legislation and best practice guidance and submitted for approval by the CDM coordinator.

Throughout we will refer to and seek approval of the management the School during the development of these documents.

Accommodation and Set up

Upon commencement Galliford Try will secure the area indicated in the Management plan drawing using “Heras” type fencing. The line of which will vary depending on the stage of construction whilst being maintained as a secure boundary to unauthorised access for the duration of the works.

Safety signage will be installed at key places as identified. Mobile site offices will be situated as indicated within the adjacent Raeburn site and, where space requires, stacked. Within these facilities will be offices, a suitable room for induction, canteen and drying room, secure storage and toilets.

Drainage will, by preference, discharge to foul drain however where that is not practicable a tank will be used. Connection to mains services will be provided.

Site works access

Galliford Try’s resident Project Manager will agree specific access constraints with the School prior to commencing on Site.

Their intention is to limit the impact of the works on the existing School and its population by accessing the works through the drive running parallel to the north eastern boundary.

Access to the site will then be by the shortest possible route by temporary roadway with timing of access restricted to avoid times when the field is in use. All orders will be placed on the express proviso that the restrictions will be complied with. A sign will be positioned permanently in a prominent position immediately adjacent to the entrance gate to the temporary access road to directly inform delivery drivers of the restriction.

An area for contractors parking will be provided within the boundaries of the school site.

Sequence of works

Works will commence with the earthworks to the field and new MUGA. The excavation of the school site will follow with the superstructure and envelope following. The final area of work is envisaged as the modification of the car parking area.

Refer to accompanying drawing KH-13 for site layout.
Ground Preparation for replacement trees

Topsoil is to conform to BS 1882:2007 Grades of Topsoil. General Purpose Grades suitable for amenity purposes. Site operations and soil handling are to conform to BS 4423:1990 Code of Practice for General Landscape Operations. Subsoil is to be decompacted prior to spreading to permit free drainage and root penetration. Topsoiling is to be carried out when conditions are dry and when the topsoil is in a dry and friable state. Topsoil shall be clean, free of stones larger than 25mm in any direction, perennial weeds, plant matter and other extraneous material. Topsoil shall be spread evenly on formation levels to a consolidated (undecomposed) depth of 450mm.

Tree Planting

Trees are to be pit planted in 1000mm diameter x 750mm deep pits in the locations shown. Bases of pits are to be broken up to 150mm depth and sides are to be forked to aid drainage. Trees are to be planted upright with root collars at ground level. Boccoli material is to be mixed with 50% by volume of peat free compost prior to backfilling. Trees are to be supported with 2no 75mm diameter round pressure treated stakes, driven 1m in the ground and finished to 300mm above ground level. Trees are to be tagged using 2no adjustable strap rubber ties. Trees are to be watered to field capacity following planting.

Aftercare and Maintenance

All areas are to be kept weed free, and ornamental mulch is to be topped up as required to maintain a uniform depth of 60mm. Pruning is to be undertaken as required in February to reduce encroachment onto adjacent paths. All losses are to be replaced with the same species to maintain the original design. Trees ties are to be periodically loosened to accommodate tree growth and prevent restriction or abrasion.
BS5837:2005 Tree Schedule

<table>
<thead>
<tr>
<th>Tree No.</th>
<th>Species</th>
<th>Height (m)</th>
<th>Stem Dia (mm)</th>
<th>Crown Spread (m)</th>
<th>Height of Crown Clearance (m)</th>
<th>Age Class</th>
<th>Phys Con</th>
<th>Struc Con</th>
<th>Additional notes</th>
<th>Preliminary management recommendations</th>
<th>Estimated remaining contribution (Years)</th>
<th>RPA Cat</th>
<th>RPA Radius (m)</th>
<th>RPA Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Chanticleer pear (Pyrus calleryana 'Chanticleer')</td>
<td>5</td>
<td>90</td>
<td>1 1 1 1</td>
<td>2</td>
<td>Yng</td>
<td>Good</td>
<td>Fair</td>
<td>Ground compacted around base of tree as a result from children playing. Small bark wound (100mm long) at 0.5m west with evidence of further smaller wounds on stem, otherwise reasonable.</td>
<td>None.</td>
<td>Tree protection fencing.</td>
<td>20-40</td>
<td>C</td>
<td>1.08</td>
</tr>
<tr>
<td>T2</td>
<td>Purple leaved plum (Prunus cerasifera 'Pissardii')</td>
<td>7</td>
<td>380</td>
<td>5.5 5 4.5 4.5</td>
<td>2.5</td>
<td>Mat</td>
<td>Fair</td>
<td>Fair</td>
<td>Ground compacted around base of tree as result from children playing. Fully mature. Main stem forks at 2.5m into a dense crown with rubbing branches. Lower northern branch exhibits saprophytic fungi on its underside. Overall a reasonable quality specimen for its age.</td>
<td>None.</td>
<td>Fall to facilitate development.</td>
<td>10-20</td>
<td>C</td>
<td>4.56</td>
</tr>
<tr>
<td>T3</td>
<td>Swedish whitebeam (Sorbus intermedia)</td>
<td>5</td>
<td>165</td>
<td>2 2 2</td>
<td>2</td>
<td>Mid</td>
<td>Good</td>
<td>Good</td>
<td>Surface roots to south with minor damage. Ground compacted around the base of the tree as a result from children playing. Main stem forks at 2m. Overall in good condition.</td>
<td>None.</td>
<td>Fall to facilitate development.</td>
<td>20-40</td>
<td>C</td>
<td>1.98</td>
</tr>
<tr>
<td>T4</td>
<td>Hybrid black poplar (Populus x canadensis)</td>
<td>13</td>
<td>1085</td>
<td>3.5 3.5 3.5 4</td>
<td>6</td>
<td>Mat</td>
<td>Fair</td>
<td>Fair</td>
<td>Surface root 5m to north with mower damage. Girdling roots to north. Heavily reduced winter 2010 (all of the crown removed) following storm damage. Poplar has not responded well with only small amounts of regrowth and given current condition it is unlikely to recover.</td>
<td>Fall.</td>
<td>Fall due to poor condition.</td>
<td>0-10</td>
<td>R</td>
<td>13.02</td>
</tr>
<tr>
<td>G5</td>
<td>Group of: Whitebeam (Sorbus aria), London plane (Platanus x Hispanica), Ash (Fraxinus excelsior), Small leaved lime (Tilia cordata), Hawthorn species (Crataegus sp.), Wild cherry (Prunus avium)</td>
<td>up to 14</td>
<td>up to 460</td>
<td>av dia 7</td>
<td>2</td>
<td>Mid to mat</td>
<td>Fair to Good</td>
<td>Fair to Good</td>
<td>Group located close to the southern boundary. All specimens are in reasonable condition and have high retention value.</td>
<td>None.</td>
<td>Tree protection fencing.</td>
<td>20-40</td>
<td>B2</td>
<td>5.76</td>
</tr>
<tr>
<td>G6</td>
<td>Group of: Norway maple (Acer platanoides), Hornbeam (Carpinus betulus), Flowering cherry (Prunus species)</td>
<td>up to 4</td>
<td>up to 85</td>
<td>av dia 2.5</td>
<td>1</td>
<td>Yng</td>
<td>Dead to Good</td>
<td>Poor to Good</td>
<td>Young specimens, some recently planted with stakes and ties in position. One tree is dead, several others in decline most likely due to lack of water. Dead hornbeam to west of group.</td>
<td>Water in summer months. Fall and replace dead tree.</td>
<td>None.</td>
<td>40+</td>
<td>C</td>
<td>1.02</td>
</tr>
<tr>
<td>G7</td>
<td>Group of: Norway maple (Acer platanoides), Hornbeam (Carpinus betulus), Flowering cherry (Prunus species)</td>
<td>up to 5</td>
<td>up to 65</td>
<td>av dia 2.5</td>
<td>1</td>
<td>Yng</td>
<td>Fair to Good</td>
<td>Fair to Good</td>
<td>Young specimens located on boundary. In reasonable condition with long term potential.</td>
<td>None.</td>
<td>None.</td>
<td>40+</td>
<td>C</td>
<td>0.78</td>
</tr>
</tbody>
</table>
1.0 Summary

SRL was commissioned by Galliford Try Construction Ltd to do an environmental noise survey at the existing Kings Heath Primary School site. This survey was to help us establish the dominant noise sources present on the site and to assess the feasibility of various ventilation strategies for the proposed new build area of the site.

We measured ambient noise levels at the Kings Heath Primary School site on 30 June 2011.

The BB93 criteria for indoor ambient noise levels can be achieved in the proposed new building with natural ventilation using open windows.

2.0 Survey Data

Our measurement locations are shown in Appendix C. The survey positions were selected to represent the main noise sources around the school site. The measurements exclude noise from pupils as BB93 states that this should not be included in noise break-in assessments. The tabulated results of the survey are shown in Appendix B.

The dominant noise source around the school site is occasional road traffic from nearby roads. The noise levels range from 41dB (L_{Aeq}) at Position 1 to 49dB (L_{Aeq}) close to Park Crescent.
3.0 Noise Breakin

The noise level on the perimeter of the proposed new building is 41-43 dB(A). BB93 specifies indoor ambient noise levels of 35 dB(A) for standard teaching rooms with BB101 allowing a 5 dB(A) relaxation for higher ventilation rates where natural ventilation systems are used. The site noise levels are low enough that open windows can be used for the new building to provide natural ventilation and maintain indoor ambient noise levels specified by BB93 and BB101.

Any thermal double glazing is capable of meeting the indoor ambient noise level requirements for the new building. Similarly it is likely that any façade and roof buildup will be capable of meeting the indoor ambient noise level requirements for the new building. The roof construction also needs to be considered in terms of rain noise. We will assess this as the design progresses.

I have assumed natural ventilation needs a façade opening equivalent to 5% of the floor area for the 8l/s/pupil ventilation rate. I have included the 5 dB(A) relaxation allowed by BB101 for natural ventilation. For 3l/s/pupil ventilation rate the openings must be limited to 1.6% of the floor area.

There are no mandatory requirements for ‘ancillary spaces’ (e.g. kitchens, offices, staff rooms, corridors, stairwells and toilets).

4.0 Mechanical Services Noise

Any noise created by services (other than that from teaching equipment such as computers and projectors) is required to meet the BB93 ambient noise levels specified for a duty of 3l/s/person. This includes break-in from external plant to teaching spaces. Mechanical services ducts must not penetrate partitions between classrooms. The ducts must run in the circulation space, with individual branches off into teaching spaces. The indoor ambient noise level requirements for standard rooms are given in Appendix E.

The noise levels from all plant must be attenuated to 45 dB(A) outside openable windows and rooflights, and to 50 dB(A) at any external teaching areas.

Please call me if you have any questions.

Yours sincerely

[Signature]

Chris Wright
For and on behalf of
SRL Technical Services Limited
Tel: 01787 247595
Email: cwright@srltsl.com
Appendix A – Survey Details

A1.1 Location of Survey

Kings Heath Primary School, North Oval, Northampton. NN5 7LN

A1.2 Date & Time of Survey

30 June 2011 09:10-13:40

A1.3 Personnel Present During Survey

Allen Smalls (SRL Ltd)

A1.4 Instrumentation

Bruel & Kjaer

Type 2260 Sound Level Meter (SRL No. 739)
Type ZC 0032 Microphone Pre-Amp (SRL No. 741)
Type 4189 Microphone (SRL No. 742)
Type 4231 Sound Level Calibrator (SRL No. 819)

A1.5 Calibration Procedure

Before and after the survey the measurement apparatus was check calibrated to an accuracy of +0.1dB using the type 4231 Sound Level Calibrator. The Calibrator produces a sound pressure level of 94 dB re 2x10-5 Pa at a frequency of 1 kHz.

A1.6 Survey Procedure

Ambient noise levels were monitored at various positions around the sites as shown in Appendix C. The measurements are tabulated in Appendix B and an explanation of acoustic terms is given in Appendix D.

A1.7 Weather Conditions

Dry, still, little cloud
Appendix B – Survey Manned Measurement Results

Table B1 - Measured Ambient Noise Levels (dB)

<table>
<thead>
<tr>
<th>Position</th>
<th>Start Time</th>
<th>End Time</th>
<th>L<sub>eq</sub></th>
<th>L<sub>A10</sub></th>
<th>L<sub>A90</sub></th>
<th>L<sub>Amax</sub></th>
<th>L<sub>A1</sub></th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>09:13</td>
<td>09:23</td>
<td>41</td>
<td>43</td>
<td>37</td>
<td>61</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>13:03</td>
<td>13:19</td>
<td>43</td>
<td>45</td>
<td>38</td>
<td>57</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>09:27</td>
<td>09:38</td>
<td>49</td>
<td>49</td>
<td>36</td>
<td>68</td>
<td>61</td>
<td>~3m from curb</td>
</tr>
<tr>
<td>2</td>
<td>13:22</td>
<td>13:21</td>
<td>46</td>
<td>47</td>
<td>35</td>
<td>67</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

All measurements in dB re 20 μPa

Table B2 - L_{eq} Octave Band Levels (dB)

<table>
<thead>
<tr>
<th>Position</th>
<th>Time</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1k</th>
<th>2k</th>
<th>4k</th>
<th>dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>09:13</td>
<td>51</td>
<td>49</td>
<td>37</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>29</td>
<td>41</td>
</tr>
<tr>
<td>1</td>
<td>13:03</td>
<td>53</td>
<td>44</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>36</td>
<td>32</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>09:27</td>
<td>56</td>
<td>49</td>
<td>44</td>
<td>43</td>
<td>44</td>
<td>44</td>
<td>34</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>13:22</td>
<td>55</td>
<td>50</td>
<td>47</td>
<td>42</td>
<td>41</td>
<td>39</td>
<td>33</td>
<td>46</td>
</tr>
</tbody>
</table>

All measurements in dB re 20 μPa
Appendix C – Survey Positions on existing Site
Appendix D – Noise Measurement Parameter Definitions

L_{A90} - The "A" weighted sound pressure level that is exceeded for 90% of the measurement period. It is commonly used as the "Background Noise Level".

L_{A10} - The "A" weighted sound pressure level that is exceeded for 10% of the measurement period. This is often used for assessing traffic noise.

L_{A1} - The "A" weighted sound pressure level that is exceeded for 1% of the measurement period.

L_{Aeq} - The "A" weighted equivalent continuous sound pressure level. A representation of a continuous sound level containing the same amount of sound energy as the measured varying noise, over the measurement period. It can be considered as the "average" noise level.

$L_{A\text{max}}$ - The maximum "A" weighted sound pressure level during the measurement period.
<table>
<thead>
<tr>
<th>Type of Room</th>
<th>Upper limit for internal ambient noise level (dB L_{Aeq} (30 minutes))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary School Classroom</td>
<td>35</td>
</tr>
<tr>
<td>Group Area/Breakout Space</td>
<td>40</td>
</tr>
</tbody>
</table>
Drainage

It is proposed to connect the new foul water drainage from the extension to the existing foul water drainage system serving the school.

The existing foul water drainage system serving the school will be checked for available capacity as part of the detailed design.

The existing foul water drainage system serving the school eventually discharges to the public sewerage system. A Section 106 (Water Industry Act) Agreement will be entered into, to agree the increase in flows to the public sewerage system.

In order to connect to the existing foul water drainage system serving the school, effluent from the proposed building may require pumping due to shallow existing invert levels.

An alternative option can be considered during the detailed design, which is to connect by gravity directly to the public sewerage system at the opposite side of the site.

Surface Water drainage from impermeable areas created by the development will be treated in line with current regulations in relation to flood risk. In this instance, surface water will discharge to an existing attenuation system on the site, with additional storage provided as required. This eventually discharges to the public sewerage system.

The proposed hard play area will discharge to a soakway on site. This is in light of favourable soil infiltration rates being indicated in ground investigation reports from previous projects.

Parts of the existing drainage at the school will require diversion due to the proximity of the extension to the existing school building.
External Works

Hard standing areas are proposed which may be accessible to vehicles. These will be designed for the expected volumes of traffic, and with pavement foundations informed by a CBR value.

DSA Drawing 11/13366/SK50 indicates a preliminary drainage strategy for the proposed development. This is based on limited archive information supplied to DSA.

The extent of new topographical survey required to complete the detailed design is indicated on the above drawing.

The extent of existing drainage recommended to be CCTV surveyed to verify its condition is indicated on the above drawing.

The location of soil infiltration rate testing to BRE Digest 365 is indicated on the above drawing. This is required to design surface water infiltration devices. The locations of CBR tests for pavement design are also indicated.
Evora

No longer compromise performance for style.
Evora is a contemporary, low-profile luminaire engineered to incorporate the very latest technologies including integral electronic gear and remote monitoring systems.

Now available for mounting heights of up to 10m and with an extensive range of lamps, from 45W CosmoPolis to 210W Philips MASTERcolour CDM Elite MW, Evora offers specifiers an extremely stylish, highly efficient lighting solution, providing low energy consumption, reduced CO² emissions and ultimately low cost of ownership through reduced maintenance and replacement costs.

Meeting the most stringent of performance criteria, Evora’s clean, unobtrusive design, with no visible fastenings is ideally suited to a wide range of applications including road, residential, amenity and car park lighting.

Evora LED available soon
For projects where stylish design is a prerequisite, Evora’s distinctive bracket options complement a wide range of urban environments.

This dedicated range of brackets are manufactured in our UK facility (ensuring a lower carbon footprint) to provide a solution for every need. For further details on all available bracket options please visit www.dwwindsor.com (bespoke brackets can be made to special order).
Introducing: MASTERColour® CDM Elite

Combining the lifetime efficiency and reliability of CosmoPolis with an unrivalled colour quality, Evora featuring Philips MASTERColour® CDM Elite MW offers distinct advantages over alternative light sources/competitor products.

High efficiency: excellent colour rendering (CRI 90+) and up to 120 lm/w gives superior, long-lasting white light, which combined with our patented Diamond Optic® reflector, could result in increased column spacings/fewer product needed to meet your lighting requirements – maximising any investment

Miniaturisation: Extremely compact the CDM Elite MW is 50% smaller than conventional HPI and HPL lamps yet offers improved efficiency and light distribution

Environmentally friendly: featuring low mercury and no lead, the high efficiency of the lamp and electronic driver means lower energy consumption and reduced CO₂ emissions. The long lamp life translates to reduced maintenance and replacement costs

Thermal Management

Evora has been designed from its very conception to provide exceptional performance.

With intelligent thermal management, Evora’s electronic components are housed within an active ‘Cool-Zone’. Separated from the heat source (lamp), the components operate at considerably lower temperatures, typically 20°C below the maximum allowable operating temperatures; consequently service life can be considerably extended.

Typically a 10°C reduction in the temperature of the electronic ballast can increase life by circa 50,000 hours. Evora’s innovative Cool-Zone, which can incorporate integral control gear, photocell and remote monitoring units, is expected to provide an increased service life in excess of 100,000 hours (when standard electronic control gear is specified)*.

Evora’s superior thermal capabilities ensure that it is suitable for the NEW Philips 210W MASTERColour® CDM Elite MW (flat glass version only). Despite the high temperature generated by the 210W lamp, Evora’s unique Cool-Zone guarantee’s that the temperature of the electronic ballast remains within limits, safeguarding the service life of the gear and luminaire.

* Hanard Engineering Plc

Electronic Ballasts

Evora will accept all of the most widely used market-available electronic ballasts for high pressure sodium, metal halide and CosmoPolis lamps.

Owing to Evora’s exceptional thermal management, ballasts will operate at much lower temperatures than the manufacturers recommended limits, extending life and reducing the lifetime carbon footprint of the product.

The benefits of electronic ballasts include:

Energy Savings: With greater efficiency compared to magnetic ballasts, electronic ballasts offer the same light output whilst consuming less power, reducing running costs and carbon footprint.

Lamp Life: Electronic ballasts with “soft” ignition all but eliminate wear on the lamp’s electrodes which is a major cause of light output depreciation and lamp failure. Lamps operate for much longer (reportedly up to twice as long), increasing service intervals and reducing maintenance costs and carbon footprint.

Light Output: Lamps run on electronic gear operate at a constant light output across their life irrespective of supply voltage variation.

Dimming: Certain electronic ballasts are able to dim discharge light sources, providing lower light levels during off-peak periods, lower energy use and carbon savings.

Remote Monitoring

The Evora is designed to accommodate the most popular remote monitoring systems on the market in a low ambient temperature environment, thus enhancing service life.

What is Remote Monitoring?

Using a remote monitoring system allows the control and monitoring of a luminaire from a PC/laptop or even mobile phone through mains-borne signalling or wireless technologies.

Using compatible software, the range of operations include:

- Ability to change programming depending on site specific requirements
- Pre-programmed dimming and switching of individual luminaires or groups of luminaires
- Dimming can be configured in timed stages for different groups of fittings, with the ability to ramp up light levels during peak periods or in the event of an emergency
- Lamp-life prediction and energy consumption monitoring
- Remote fault recognition and diagnosis, and the ability to send automated messages to your contractor when site attendance is required

Lamps can now be monitored prior to failure therefore lamp changes and cleaning programmes can be efficiently planned and intervals extended. With scouting for lamps now completely avoidable, the carbon footprint of luminaire maintenance is reduced.
1 High pressure die-cast aluminium construction
2 Single push button, for tool-less access
3 Cool-Zone housing control gear, photocell and remote monitoring units
4 Silicone gaskets
5 Plug/socket lamp connection and removable gear tray, retained by spring clips for life time tool-less maintenance
6 Built-in mechanical stop prevents over-opening
7 Quick release latch giving tool-less access to lamp
8 Optic contained within own chamber to contain heat, facilitating natural convection through canopy membrane
9 Secondary safety latch to ensure safe opening
Evora

IP66 – IK07 – Class I

Features:
- Intelligent thermal management with active Cool-Zone - reduces operating temperature and extends service life of the electronic gear, providing lower life-time maintenance costs
- 8 year DW Windsor guarantee on standard electronic ballasts
- Product design life circa 40 years
- Available with high-transmission flat glass for zero upward light pollution, or vandal-resistant polycarbonate bowl (IK10)
- Wide range of light sources, including Philips MASTERColour® CDM Elite MW for superior colour quality over life
- The sustainable choice - WEEE compliant, Evora is 98% recyclable
- Evora offers tool-free access and maintenance via single push-button latch
- Extremely low profile gives windage of just 0.05m² with flat glass and 0.07m² with dished glazing
- Range of distinctive bracket options available

* Harvard Engineering Plc † Full terms and conditions available on request

Options

Evora:
For mounting at 6 – 10 metres

Evora LED:
For mounting at 6 – 8 metres

Glazing:
- Polycarbonate bowl (IK10)
- Flat Toughened Glass

Optical Control:
- Diamond Optic®
- LED Array (individually lensed)
- Road Optic

Light Source:
- 45 – 140W CosmoWhite
- ‘210W CDM Elite MW
- 70 – 150W CDO-TT
- 70, 150, ‘250W SON-T+/HQI-E
- 70, 100, 150W CMH Streetwise
- 70, 150W CDM-T
- 42, 57W PL-T
 * Flat glass only

Dimensions

<table>
<thead>
<tr>
<th>Variant</th>
<th>Dimensions (mm)</th>
<th>Weight (kg)</th>
<th>Windage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evora</td>
<td>165</td>
<td>518</td>
<td>17.0</td>
</tr>
<tr>
<td>Evora*</td>
<td>132</td>
<td>518</td>
<td>17.5</td>
</tr>
</tbody>
</table>

* with flat glass

Mounting:
- Side entry (42mm Ø)
- Direct entry (76mm Ø)

Recyclable: 98%

Other:
- Will incorporate a wide range of electronic gear types, including CosmoPolis
- Will incorporate a wide range of remote monitoring systems
- Miniature photocell available
- Wire wound gear available, with timed ignitor as standard
- Obtrusive light shield (except for flat glass)

Evora LED available April 2011, for further details visit www.dwwindsor.com

Road optic available September 2011

Materials

Body: Pressure die-cast aluminium

Seals: Silicone rubber

Finish: Polyester powder coated, any standard RAL

DW Windsor Lighting
Pindar Road, Hoddesdon, Hertfordshire, EN11 0DX
Telephone: 01992 474600 Fax: 01992 474601
E-mail: marketing@dwwindsor.co.uk
www.dwwindsor.com
Follow us: twitter.com/DWWindsor
Site Wall-mounted luminaire
for compact fluorescent lamps

44570.000 Graphit m
TC-TEL 42W GX24q-4 3200lm
ECG

Product description