Wollaston
Community Primary School
College Street, Wollaston, Northamptonshire, NN29 7SF

Planning Support Statement
November 2016
Introduction

Wollaston Community Primary School is located in College Street in Wollaston, Northamptonshire, approximately 2 miles south of Wellingborough town centre.

The site is located approximately in the centre of the village on College Street and is bounded by generally residential properties to the north and south and a grassed playing field area to the east. Pedestrian and vehicular access is directly off College Street.

The original building dates from 1894 since when there have been extensions to provide additional teaching and ancillary accommodation. Most recently extensions to provide a new school hall and kitchen and two new classrooms with ancillary facilities completed in late 2014. A temporary (mobile) classroom on the adjacent leased land currently provides community hub accommodation.

Figure 1 – Site Location

The purpose of this statement is to outline the local and national planning policy context for the planning application site. The site lies within the administrative area of Northamptonshire County Council.
Planning Support Statement
Wollaston Community Primary School

The key documents reviewed for this project include:
North Northamptonshire Joint Core Strategy Local Plan (2016)
National Planning Policy Framework, March 2012

Reference/guidance has also been drawn from the following documents to inform the design proposals (although not specifically referenced within this supporting statement):
Northamptonshire strategic plan for schools 2010 – 2021
Building Bulletin 87: Guidelines for Environmental Design in Schools
Building Bulletin 93: Acoustic Design of Schools
Building Bulletin 99: Briefing Framework for Primary School Projects
Building Bulletin 100: Design for fire safety in schools
Building Bulletin 101: Ventilation of School buildings
Building Bulletin 103: Area guidelines for mainstream schools
The Building Regulations Approved Documents (latest editions)
BS 8300: Design of buildings and their approaches to meet the needs of disabled people – Code of practice.

We have reviewed the above documents and highlighted the relevant policies/sections (using their references) which have informed the design basis for this project and added an explanation and commentary advising the specific reference to this project.

We have included a ‘Statement of Planning Need’ prepared by Northamptonshire County Council’s Strategic Planning department, within the Children, Families and Education Directorate to underpin the justification for the proposed school development. This is provided at the beginning of this Planning Support document, to explain the reasons and educational criteria which have generated the inception and scoping requirements for the project.
Statement of Need
(prepared by Northamptonshire County Council)

A feasibility study to extend Wollaston (part 2) was initially commissioned last year, due to demand, before being placed on hold. This year the school have taken 3 extra children to ensure all the children in the linked area are able to attend the school. They have also had an additional 9 children admitted via the appeal process as the school have converted the small hall into a classroom. Despite the recent extension of a new hall and two classrooms to raise the PAN from 40 to 45, a feasibility study is now required to see if the site has capacity for a further extension to take it to a PAN of 60.

There is further housing development planned for the village and the Wollaston neighbourhood planning forum is preparing to submit their documentation imminently and are very keen for village children to be able to attend the local school. The feasibility needs to ascertain whether any more classroom space can be added to the school; they would require 3 extra classes if the PAN was 60, although if they continue to use the hall as a classroom, this would reduce to 2. The school has previously suggested that the existing IT suite could be extended and converted into classroom space and there is potential around the ‘cow shed’ area (outside covered play). Toilet numbers would need to be checked, along with associated space and also the size of the playground.
Proposal

1. Facilities

Additional teaching accommodation and associated facilities are required to respond to proposed housing developments in the area. The brief outlines the requirements as follows:

- 2 No new classrooms for KS2, circa 56 m2 each, to be located in position of the ‘cowshed’ and provided as a two storey extension;

- Increased toilet provision;

- 1 No additional classroom in revised location above existing Classroom 49.

2. Amount

The gross internal floor area of the proposed new accommodation as illustrated on drawings 41583-02D and 41583-03D is as follows:

Two storey extension including third classroom:

GF: 126 m2 including steps down to basement store (add 4.7 m2)

FF: 145 m2

Total: 271 m2

Covered play area – approx. 72 m2

Individual teaching, curriculum, activity and ancillary spaces in the new teaching block are sized in accordance with guidance in BB103.
Figure 2 - Proposed Ground Floor Layout

Figure 3 - Proposed First Floor Layout
3. Layout

The school site slopes down westwards (towards College Street) and southwards to a lesser degree. The existing school has a number of internal level changes which reflect the site topography.

A two storey classroom extension is shown in the location of the current play barn (which is to be demolished).

The new accommodation will be reached via a corridor taken through part of the recently extended Plant Room 901. The corridor includes a short flight of steps to overcome the approximate 750mm difference in levels between the existing school corridor and the FFL of the proposed extension (current level of the play barn). This will also allow retention of the existing steps and doorway from Classroom 06. Alterations to the existing plant room 901 will involve relocation of heating plant to the basement plant room (currently a store).

Each classroom is 56 m² in area and in addition each has a small store approx 2 m².

A staircase 1200 mm wide provides access to the first floor accommodation. The landing area will be limited to the area necessary for access to the toilets and to the classroom and will be bounded by a perimeter handrail and balustrade on the two open sides; the void between classroom 06 windows and the landing will avoid total enclosure of the space and create an attractive airy space.

Because of the limitations of space and layout it is proposed that the space between Classroom 06 and the new classrooms is a protected lobby enclosure, i.e. 60mins fire rated construction, which will necessitate replacement of the existing glazed door and window openings to Classroom 06; this will protect the means of escape from the first floor and would be subject to the approval of the Building Control Officer. The lobby has an external exit door opening on to the paved surface outside.

A pair of unisex toilets is to be provided at both ground floor and first floor levels, numbers based on one toilet per 20 pupils as per guidance in BB103.

The existing access steps and basement wall leading to the basement store below classroom 11 will be completely replaced and the steps enclosure will be fire rated.

The basement store is to become a plant room and will house heating and domestic hot water plant relocated from the existing plant room, together with an additional boiler to provide heating and domestic hot water to the new extension.

At this stage we have not included a lift to provide access to the first floor as we understand it is NCC policy generally not to make such provision and instead to encourage management measures to accommodate staff or pupils who may have impaired mobility.

A third classroom is located at first floor above the recently constructed classroom 049. The size of the classroom is approx 59 m² excluding the store.
It is proposed that the classroom above the recently completed classroom extension will have a steel frame built within the existing ground floor classroom space to support a precast concrete plank floor construction and the first floor superstructure.

The external wall and roofing materials will match the existing as far as possible.

The fenestration of the classrooms will reflect the pattern and style of the existing classrooms. All windows will incorporate top hung opening lights for natural ventilation.

A ridge rooflight will be located in the two-storey extension above the first floor landing area to provide natural light and also some borrowed light to Classroom 06. A further area of roof glazing is indicated above the lower slope of the roof above the entrance and stairs half landing. Sun shading and/or mechanical ventilation may be required to control the environment of this link space.

Rooflights are to be installed within the existing roofs to Classrooms 06 and 11.

Mechanical supply and extract ventilation is likely to be required to classroom 06 to maintain satisfactory air quality. The existing classroom 49 and the new ground floor classroom will be mechanically ventilated with a supply and extract system incorporating heat recovery.

The two first floor classrooms will be naturally ventilated Velux or similar rooflights with automatically controlled motorised opening and closing as illustrated on the elevations.

Figure 4 – Proposed sections
External works
A covered play area is located alongside the proposed Classroom and will take the form of a canopy on posts with open sides. This position avoids relocation of the existing secure enclosure and controlled access gate (for early morning access etc) adjacent Classroom 02. A fence and hand gate is included at each end of the covered play area.

4. Scale
The proposed extensions reflect the existing form and character of the original school buildings and the more recent additions. The pitched gabled roof form inevitably increases the overall height of the extensions compared to a simple flat roof; however the sloping roof will minimise the overall height over the entrance and staircase and consequently will reduce the mass alongside the south boundary.

5. Appearance
The external facing materials are to comprise:

- red facing brickwork with feature brickwork to the openings and at the eaves;
- windows and external doors will be aluminium, polyester powder coated, white in colour;
- opening windows will be provided throughout (refer elevations drawing) and will be top hung with restrictors;
- slate roof covering to pitched roof slopes, lead lined valley gutter and flashings.

The building construction will be designed to exceed the requirements of the Building Regulations in terms of thermal performance and will incorporate heat recovery, low energy light fittings, non-concussive taps, etc.
Figure 5 – Proposed elevations
Figure 6 – Existing use of the site
6. Access

The site levels are generally user friendly with dropped kerbs to all external pavement areas. All signage, floor finishes and general alarm systems will be provided with audio and visual warnings to current DDA guidelines. The means of escape will generally comply with the revised Building Regulations Part B Volume 2: 2006.

The Disabled Discrimination Act (DDA) requires all service providers, building owners/managements and designers to accommodate the needs of people with disabilities or impairments and guarantee that services are available to them on an equal basis. The new facilities will comply with the requirements of the Equality Act 2010, Code of Practice BS 8300 and the requirements of Part M of the Building Regulations.

Doors

Generally all doors within the new building have a clear opening of at least 875mm and are located so that there is at least 300mm clear to the leading edge.

Door furniture, closers and vision panels on new doors will be of a style and type that meets the requirements of APD Part M and the recommendations of BS 8300.

Toilets

These will be designed will comply with the recommendations of BS 8300.

Finishes

The surfaces throughout the new facility will be suitable for wheelchair users and ambulant disabled people and junctions will be level and well defined.

Contrast in colour and tone will be achieved between floor and wall finishes and in addition doors and their frames will also contrast with the walls in which they are fitted.

Means of Escape

An evacuation strategy will be put in place with responsibility allocated to certain staff for the assisted evacuation of pupils or staff with disabilities.

Personal emergency egress plans (PEEPS) will be provided for any disabled pupils, staff or visitors who use the building. These will deal with how staff will react and how assistance will be provided in the event of an emergency situation.
Car Parking

It is evident that there is little, if any, scope for additional parking on site. The existing parking area has marked spaces for 17 cars including 1 disabled parking bay. Based on 1 space per full-time staff and 1 per 2 part-time staff this is inadequate for the current 30 full-time and 8 part-time members of staff, i.e. 18 spaces.

The proposed extension will result in an additional 4 full-time staff (2 more teachers and 2 more TA’s) and therefore the same number of additional parking spaces.

Off site, College Street is very narrow and is already well used for parking. The school undertook to contact local businesses to establish whether they have any spare parking capacity which may be set aside and used by the school for limited staff use. Similarly the Parish Council (or Village Hall Committee) is to be contacted regarding possible use of that car park (approx. 8 no. spaces).
Planning

Wollaston is within the administrative area of Northamptonshire County Council, and is subject to the North Northamptonshire Joint Core Strategy Plan. As such this is a key document in planning terms for the proposed development.

Planning Justification:
Section 38(6) of the 2004 Act requires that planning applications be determined in accordance with the development plan unless material considerations indicate otherwise. Therefore, the enclosed proposal should be judged against those relevant policies from the North Northamptonshire Joint Core Strategy Local Plan as well as the content of the National Planning Policy Framework NPPF (2012) where applicable.

The Wollaston Local Plan Map confirms that there are no designations relating to the element of the site where the proposed extension is to be located.

The school site does not sit within a conservation area.

North Northamptonshire Joint Core Strategy Plan
Policy 1 Presumption in favour of Sustainable Development
The proposals accord with this policy to make Wollaston more sustainable in terms of its education provision by providing improved and reorganised facilities for this Community Primary School in line with the County Council’s Strategic Plan for Schools 2010-2021 to meet both changing educational needs and the particular requirements of the school. The improved facilities for both the school and for use within the wider community will serve to improve the economic, social and environmental conditions in the area. The proposal to improve Wollaston School will support the local workforce by providing further employment opportunities which will in turn benefit the local economy.

Policy 4 Biodiversity and Geodiversity
The enlarged play area will remove some existing raised planting beds. There are no mature trees or hedgerows that will be affected by these extensions and alterations work.

Policy 8 North Northamptonshire Place Shaping Principles
The proposal will create the new extension responding to the site’s immediate context and local character using appropriate elemental design and palette of materials. It will also respond to the local topography and the overall form.
The new facilities will ensure quality of life and safer and healthier communities by incorporating ecologically sensitive design, appropriate fire safety measures and flexible designs for buildings.

Policy 9 Sustainable Buildings
The proposed extension fulfils these objectives by delivering a high quality design solution for the scheme. The proposed two storey classroom extension reflects the existing form and character of the original school buildings and the more recent additions. It will provide additional teaching accommodation and accessible hygiene and toilets facilities.

The construction will provide an envelope which will exceed the minimum statutory requirements for thermal insulation and will utilise energy efficient heating, lighting, ventilation and control systems. Heating for the extension will be fed by additional boilers. Hot water will be supplied via gas fire boilers. The building will incorporate water saving measures such as dual flush toilets and non-concussive taps. During the construction stage the contract will include restrictions which will prohibit site deliveries / removals during the periods around the start and close of the school day.

Policy 23 Distribution of New Jobs
The expanded school will provide a total of 4 full-time jobs, securing the existing jobs for those already employed.

Policy 5 Water Environment, Resources and Flood Risk Management
The site is some distance from the nearest water course and the flood risk map on the Environment Agency’s interactive website shows that there is no risk of flooding.

National Planning Policy Framework, March 2012
The NPPF sets out those roles which the planning system is required to perform in order to ensure the delivery of sustainable development. The application will enable the improvement and continued supply of the education offer in Northamptonshire and will ensure that the school is able to offer an attractive local option to parents who are considering the educational needs of their children without the need to travel excessive distances. The proposal is clearly in line with the Core Planning Principles set out at Para 17 of the Framework.

The Government attaches great importance to ensuring that a sufficient choice of school places is available to meet the needs of existing communities. In addition, Para 72 of the framework encourages local planning authorities to take a pro-active, positive and collaborative approach to
widening the choice of education. Para 72 also requires LPA’s to afford great weight to the need to expand, create or alter schools, the application is therefore in conformity with the Governments planning and education objectives.

The proposal will improve the education offered by Wollaston. Wollaston Community Primary School is a key piece of local infrastructure which needs to remain an attractive place for parents to send their children in their formative years. It is clear that improving the existing teaching and amenity (sanitary) facilities and external amenity areas will help to ensure that the school responds to current standards and meets the expectations of parents, pupils and staff. It is therefore considered that the application, which conforms to both national and local planning policy, should be seen favourably and approved without delay in line with the presumption as set out at Para 14 of the Framework.

Pre-Application Consultations and Community Involvement

A number of bodies will be consulted in developing the design proposals.

NCC Planning

Informal advice will be sought by the County Council’s project manager regarding public consultation and any other matters that need to be taken into consideration prior to the Planning Application.

Public Consultation

A Pre-Planning Consultation was held at Wollaston School on 14th September 2016. Invitations were issued to school parents, pupils, local residents and parish councillors. Representatives from Northamptonshire County Council, the School and DarntonB3 Architecture were present to respond to queries raised and provide accurate information and clarification.

No-one objected to the principle of increasing the capacity of the school with some statements showing support for the extension.

During the Public Consultation there were concerns from residents in relation to traffic which is an existing issue because of the narrow streets surrounding the school.
WOLLASTON PRIMARY SCHOOL, NORTHAMPTONSHIRE

PRELIMINARY BAT ROOST ASSESSMENT

A Report to: Northamptonshire County Council

Report No: RT-MME-122590

Date: June 2016
REPORT VERIFICATION AND DECLARATION OF COMPLIANCE

<table>
<thead>
<tr>
<th>Report Version</th>
<th>Date</th>
<th>Completed by:</th>
<th>Checked by:</th>
<th>Approved by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td>15/06/2016</td>
<td>Sarah Hickman BSc (Hons) Grad CIEEM (Ecological Consultant) and Stephanie Bradbury BSc (Hons) (Ecological Project Officer)</td>
<td>Dr Katy Read CEnv MCIEEM MCIWEM C.WEM DipSM (Executive Director)</td>
<td>Dr Philip Fermor CEnv MCIEEM (Managing Director)</td>
</tr>
</tbody>
</table>

The information which we have prepared is true, and has been prepared and provided in accordance with the Chartered Institute of Ecology and Environmental Management’s Code of Professional Conduct. We confirm that the opinions expressed are our true and professional bona fide opinions.

DISCLAIMER

The contents of this report are the responsibility of Middlemarch Environmental Ltd. It should be noted that, whilst every effort is made to meet the client’s brief, no site investigation can ensure complete assessment or prediction of the natural environment.

Middlemarch Environmental Ltd accepts no responsibility or liability for any use that is made of this document other than by the client for the purposes for which it was originally commissioned and prepared.

VALIDITY OF DATA

The findings of this study are valid for a period of 12 months from the date of survey. If works have not commenced by this date, it may be necessary to undertake an updated survey to allow any changes in the status of bats on site to be assessed, and to inform a review of the conclusions and recommendations made.
NON-TECHNICAL SUMMARY

In May 2016, Northamptonshire County Council commissioned Middlemarch Environmental Ltd to undertake a Preliminary Bat Roost Assessment at Wollaston Primary School in Wollaston, Northamptonshire. This assessment is required to inform a planning application associated with the proposed construction of a two-storey extension to the existing primary school footprint, with one new classroom on the ground floor and two new classrooms on the first floor.

To fulfil the above brief to assess the potential for the existing buildings on site to support roosting bats, a Preliminary Bat Roost Assessment was undertaken on 25th May 2016.

The school was a single-storey, brick building with a multiple pitched, complex roof of various heights and ages. The proposed works will affect only a small area of the building (Sections 1, 2 and 3), and as such only these sections were surveyed.

Sections 1, 2 and 3 were generally in good condition. However, numerous potential ingress opportunities for bats were identified, including:

- Lifted and dislodged roof tiles;
- Gaps between soffits/fascia and walls;
- Gaps and holes in brickwork; and,
- Gap at end of ridge.

Due to their height and location, some of these features could not be fully inspected. Where accessible, features were checked and no evidence of bats was recorded. No evidence of bats was recorded during the internal assessment of these sections, however the loft spaces and roof voids could not be accessed. Given the presence of potential roosting features, these sections are considered to have high potential to support roosting bats. As not all features could be fully inspected, there is insufficient data at this time to conclude whether these sections contain a bat roost.

Following the results of the Preliminary Bat Roost Assessment, the following recommendations have been made (full details are provided in Chapter 5):

R1 **Sections 1, 2 and 3**
Sections 1, 2 and 3 have been identified as having high potential to support roosting bats. Bat Surveys: Good Practice Guidelines published by the Bat Conservation Trust (Collins, 2016) recommends that for buildings with high bat roosting potential at least three dusk emergence and/or dawn re-entry surveys be undertaken during the bat emergence/re-entry survey season to determine the presence/absence of roosting bats within the building. If a roost is discovered during these surveys, a Natural England licence application may be required.

R2 **Lighting**
The development should aim to limit the impact of light pollution on bats through the careful use of lighting in critical areas only and at a low level with minimum spillage. Any lighting, either temporary or permanent, along the site boundaries should be kept to a minimum and directed away from suitable foraging and commuting features to ensure there is no increase in light levels.

R3 **Habitat Enhancement**
The development should aim to enhance the site for bats. This may include the provision of roosting habitat through the installation of bat boxes, or creation of foraging areas by planting species which attract night flying insects.
CONTENTS

1. INTRODUCTION ... 4
 1.1 PROJECT BACKGROUND ... 4
 1.2 SITE DESCRIPTION AND CONTEXT .. 4
 1.3 DOCUMENTATION PROVIDED ... 4

2. METHODOLOGY .. 5

3. SURVEY RESULTS ... 7
 3.1 INTRODUCTION ... 7
 3.2 CONSTRAINTS .. 7
 3.3 SURVEY RESULTS ... 7
 3.3.1 Section 1 .. 7
 3.3.2 Section 2 .. 8
 3.3.3 Section 3 .. 9
 3.3.4 Site and Surrounding Habitats ... 10

4. DISCUSSION AND CONCLUSIONS ... 12
 4.1 SUMMARY OF PROPOSALS .. 12
 4.2 ASSESSMENT OF BUILDINGS ... 12
 4.3 POTENTIAL IMPACTS ON BATS ... 12

5. RECOMMENDATIONS ... 13

6. DRAWINGS .. 14

REFERENCES AND BIBLIOGRAPHY ... 17

APPENDIX 1 ... 18
1. INTRODUCTION

1.1 PROJECT BACKGROUND

In May 2016, Northamptonshire County Council commissioned Middlemarch Environmental Ltd to undertake a Preliminary Bat Roost Assessment at Wollaston Primary School in Wollaston, Northamptonshire. This assessment is required to inform a planning application associated with the proposed construction of a two-storey extension to the existing primary school footprint, with one new classroom on the ground floor and two new classrooms on the first floor.

In addition, Middlemarch Environmental Ltd has been commissioned to undertake the following assessments:

- Pre-development Arboricultural Survey and Impact Assessment (Report RT-MME-122594-01); and,

To fulfil the above brief to assess the potential for the existing buildings on site to support roosting bats, a Preliminary Bat Roost Assessment was undertaken on 25th May 2016.

All UK bat species are European protected species and they are capable of being material considerations in the planning process. A summary of the legislation protecting bats is included within Appendix 1. This section also provides some brief information on the ecology of British bat species.

1.2 SITE DESCRIPTION AND CONTEXT

The site is located off College Street in Wollaston, Northamptonshire, centred at National Grid Reference SP 9079 6280. The site is roughly rectangular in shape and measures approximately 0.5 ha in size.

At the time of the survey, the site comprised Wollaston Primary School; school buildings with associated hardstanding playground, footpaths and car parking areas. Scattered trees, shrubs and hedges were located around the perimeter of the site.

The site was bordered by residential properties to the north and south, an area of amenity grassland to the east and College Street to the west. The wider landscape is dominated by a mix of residential dwellings and industrial units, interspersed with recreational grounds and surrounded by agricultural land.

1.3 DOCUMENTATION PROVIDED

The conclusions and recommendations made in this report are based on information provided by the client regarding the scope of the project. Documentation made available by the client is listed in Table 1.1.

<table>
<thead>
<tr>
<th>Document Name / Drawing Number</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topographical Survey: 15927</td>
<td>Global Surveys</td>
</tr>
<tr>
<td>Feasibility Study – Site Layout Option 3: 41583L-70_03 Rev 4</td>
<td>Darnton B3 Architects</td>
</tr>
</tbody>
</table>

Table 1.1: Documentation Provided by Client

The ‘Site Layout Option 3’ drawing is included in Chapter 6.
2. METHODOLOGY

In line with the specifications detailed in Bat Mitigation Guidelines (English Nature, 2004) and Bat Surveys for Professional Ecologists: Good Practice Guidelines (Collins, 2016), a Preliminary Bat Roost Assessment of the buildings was conducted during daylight hours. A visual assessment was undertaken to determine the presence of any Potential Roost Features (PRFs), together with a general appraisal of the suitability of the site for foraging and commuting. Table 2.1 provides examples of PRFs. Any accessible PRFs were inspected using binoculars, a torch and endoscope for evidence of possible bat presence. Buildings were surveyed externally and internally.

For reasons of health and safety, the survey was only undertaken in areas accessible from 3.5 m ladders.

Based on the PRF’s present, the survey area was assessed using the suitability classes detailed within Bat Surveys for Professional Ecologists: Good Practice Guidelines (Collins, 2016), as detailed in Table 2.2.

<table>
<thead>
<tr>
<th>Example of Potential Roost Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Externally</td>
</tr>
<tr>
<td>• Access through window panes, doors and walls;</td>
</tr>
<tr>
<td>• behind peeling paintwork or lifted rendering;</td>
</tr>
<tr>
<td>• behind hanging tiles;</td>
</tr>
<tr>
<td>• weatherboarding;</td>
</tr>
<tr>
<td>• eaves;</td>
</tr>
<tr>
<td>• soffit boxes;</td>
</tr>
<tr>
<td>• fascias;</td>
</tr>
<tr>
<td>• lead flashing;</td>
</tr>
<tr>
<td>• gaps under felt (even including those of flat roofs);</td>
</tr>
<tr>
<td>• under tiles/slates;</td>
</tr>
<tr>
<td>• existing bat and bird boxes; and</td>
</tr>
<tr>
<td>• any gaps in brickwork or stonework permitting access into access to cavity- or rubble-filled walls.</td>
</tr>
<tr>
<td>Internally</td>
</tr>
<tr>
<td>• behind wooden panelling;</td>
</tr>
<tr>
<td>• in lintels above doors and windows;</td>
</tr>
<tr>
<td>• behind window shutters and curtains;</td>
</tr>
<tr>
<td>• behind pictures, posters, furniture, peeling paintwork;</td>
</tr>
<tr>
<td>• peeling wallpaper, lifted plaster and boarded-up windows;</td>
</tr>
<tr>
<td>• inside cupboards and in chimneys accessible from fireplaces.</td>
</tr>
<tr>
<td>• within attic voids:</td>
</tr>
<tr>
<td>• the top of gable end or dividing walls;</td>
</tr>
<tr>
<td>• the top of chimney breasts;</td>
</tr>
<tr>
<td>• ridge and hip beams and other roof beams;</td>
</tr>
<tr>
<td>• mortise and tenon joints;</td>
</tr>
<tr>
<td>• all beams (free-hanging bats);</td>
</tr>
<tr>
<td>• the junction of roof timbers, especially where ridge and hip beams meet;</td>
</tr>
<tr>
<td>• behind purlins;</td>
</tr>
<tr>
<td>• between tiles and the roof lining; and</td>
</tr>
<tr>
<td>• under flat felt roofs.</td>
</tr>
</tbody>
</table>

Table 2.1: Potential Roost Features (Adapted from Collins, 2016)
<table>
<thead>
<tr>
<th>Suitability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>A structure with one or more potential roost sites that are obviously suitable for use by larger numbers of bats on a more regular basis and potentially for longer periods of time due to their size, shelter, protection, conditions and surrounding habitat.</td>
</tr>
<tr>
<td>Moderate</td>
<td>A structure with one or more potential roost sites that could be used by bats due to their size, shelter, protection, conditions and surrounding habitat but unlikely to support a roost of high conservation status (with respect to roost type only – the assessments in this table are made irrespective of species conservation status, which is established after presence is confirmed).</td>
</tr>
<tr>
<td>Low</td>
<td>A structure with one or more potential roost sites that could be used by individual bats opportunistically. However, these potential roost sites do not provide enough space, shelter, protection, appropriate conditions and/or suitable surrounding habitat to be used on a regular basis or by larger numbers of bats (i.e. unlikely to be suitable for maternity or hibernation).</td>
</tr>
<tr>
<td>Negligible</td>
<td>Negligible habitat features on site likely to be used by roosting bats.</td>
</tr>
</tbody>
</table>

Table 2.2: Classification of Structures with Bat Potential (Adapted from Collins, 2016)
3. SURVEY RESULTS

3.1 INTRODUCTION

The Preliminary Bat Roost Assessment was conducted on 25th May 2016 by Sarah Hickman (Ecological Consultant) and Marie Athorn (Field Assistant). Drawing C122590-01, illustrating the layout of the buildings on site and the results of the survey is provided in Chapter 6.

Weather conditions were recorded and are presented in Table 3.1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>25</td>
</tr>
<tr>
<td>Cloud Cover (%)</td>
<td>5</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Nil</td>
</tr>
<tr>
<td>Wind Speed (Beaufort)</td>
<td>F1</td>
</tr>
</tbody>
</table>

Table 3.1: Weather Conditions During the Preliminary Bat Roost Assessment

3.2 CONSTRAINTS

No constraints were experienced during the survey.

3.3 SURVEY RESULTS

The school was a single-storey, brick building with a multiple pitched, complex roof of various heights and ages. The proposed works will affect only a small area of the building (Sections 1, 2 and 3), and as such only these sections were surveyed.

3.3.1 Section 1

External Assessment

This section had a pitched, clay-tiled roof (Plate 3.1). It was generally in good condition with no cracks or crevices in the brickwork, tightly fitted windows set in uPVC frames and well-sealed wooden cladding on the south-eastern elevation (Plate 3.2). However, potential ingress opportunities for bats were identified, including lifted and dislodged roof tiles and gaps between the soffit box and wall top on the south-western elevation (Plates 3.3 to 3.5). Due to their height and location, some of these features could not be fully inspected. However, they appeared to be clear of cobwebs and debris when viewed through binoculars from the ground, possibly indicating recent use by fauna (e.g. bats, birds or insects). Where accessible, features were checked and no evidence of bats (e.g. droppings, feeding remains, scratch marks, grease marks or urine staining) was recorded.
No evidence of bats was recorded during the external assessment, however not all features could be fully inspected (e.g. lifted and dislodged roof tiles).

Internal Assessment
There was no loft space within this building as the plastered ceiling followed the line of the roof. The void created between the ceiling and roof tiles could not be accessed. No evidence of bats was recorded during the internal assessment, however not all features could be accessed (e.g. roof void).

3.3.2 Section 2
External Assessment
This was a new section with a pitched, slate roof (Plate 3.6). It was generally in good condition with a well-sealed roof, and windows that were set in tightly fitted uPVC frames (Plate 3.7). However, potential ingress opportunities for bats were identified. These included holes in the brickwork, gaps between the wooden fascia and walls, and a gap at the south-eastern end of the ridge where mortar was missing (Plate 3.8). Due to its height, the gap at the end of the ridge could not be fully inspected. It appeared to be clear of cobwebs and debris when viewed through binoculars from the ground, possibly indicating recent use by fauna. The other features were checked and no evidence of bats was found, however they extended beyond the reach of the endoscope.
No evidence of bats was recorded during the external assessment, however not all features could be fully inspected (e.g. gap at the end of the ridge).

Internal Assessment

There was no accessible loft space within this building due to the absence of a loft hatch (Plate 3.9). In some parts the ceiling followed the line of the roof, and the void created between the ceiling and roof tiles could not be accessed.

No evidence of bats was recorded during the internal assessment, however not all features could be accessed (e.g. loft and roof void).

3.3.3 Section 3

External Assessment

This was an older section with a pitched, clay-tiled roof (Plate 3.10). It was in a moderate state of repair with tightly fitted windows set in uPVC frames with lintels above. However, there were numerous gaps in the brickwork where mortar had degraded, and a hole was present in the northern elevation where a pipe had been removed (Plate 3.11). Gaps were also present at the eaves, and roof tiles had become dislodged (Plates 3.12 and 3.13). All of these features offer potential ingress opportunities for bats. Due to their height and location, some of these features could not be fully inspected. However, they appeared to be clear of cobwebs and debris when viewed through binoculars from the ground, possibly indicating recent use by fauna. Where accessible, features were checked and no evidence of bats was found, but many extended beyond the reach of the endoscope.
No evidence of bats was recorded during the external assessment, however not all features could be fully inspected (e.g. lifted and dislodged roof tiles).

Internal Assessment
There was no access to the loft space in this section of the building due to the height at which the hatch was located, and the storage of items beneath the hatch (Plate 3.14). No potential ingress opportunities were identified within the rooms at ground level.

No evidence of bats was recorded during the internal assessment, however not all features could be accessed (e.g. loft space).

3.3.4 Site and Surrounding Habitats
The trees, shrubs and hedges around the perimeter of the site offer suitable foraging and commuting opportunities for bats, linking the site to alternative roosting and foraging habitats in the surrounding area. Therefore, the habitats on site are considered to have high potential to be used by bats.
The site was bordered by residential properties to the north and south, an area of amenity grassland to the east and College Street to the west. The wider landscape is dominated by a mix of residential dwellings and industrial units, interspersed with recreational grounds and surrounded by agricultural land.

Other habitats within 1 km of the site suitable for roosting, commuting and foraging include:

- Residential houses and associated gardens;
- Farm houses and associated agricultural buildings;
- Running water and standing waterbodies;
- Small pockets of woodland;
- Agricultural fields with tree and hedge lined boundaries; and,
- Churches, schools and associated grounds.
4. DISCUSSION AND CONCLUSIONS

4.1 SUMMARY OF PROPOSALS

Proposals involve the construction of a two-storey extension to the existing primary school footprint, with one new classroom on the ground floor and two new classrooms on the first floor.

4.2 ASSESSMENT OF BUILDINGS

Section 1
This section was generally in good condition. However, potential ingress opportunities for bats were identified, including lifted and dislodged roof tiles and gaps between the soffit box and wall top on the south-western elevation. Due to their height and location, some of these features could not be fully inspected. Where accessible, features were checked and no evidence of bats was recorded. No evidence of bats was recorded during the internal assessment; however, the void created between the ceiling and roof tiles could not be accessed. Given the presence of potential roosting features, this section is considered to have high potential to support roosting bats. As not all features could be fully inspected, there is insufficient data at this time to conclude whether this section contains a bat roost.

Section 2
This section was generally in good condition. However, potential ingress opportunities for bats included holes in the brickwork, gaps between the wooden fascia and walls, and a gap at the south-eastern end of the ridge where mortar was missing. Due to its height, the gap at the end of the ridge could not be fully inspected. The other features were checked and no evidence of bats was found, however they extended beyond the reach of the endoscope. There was no accessible loft space within this building due to the absence of a loft hatch, and the void created between the ceiling and roof tiles in other areas could not be accessed. Given the presence of potential roosting features, this section is considered to have high potential to support roosting bats. As not all features could be fully inspected, there is insufficient data at this time to conclude whether this section contains a bat roost.

Section 3
This section was in a moderate state of repair with numerous potential ingress opportunities for bats, including gaps in the brickwork where mortar had degraded, a hole in the northern elevation where a pipe had been removed, gaps at the eaves and dislodged roof tiles. Due to their height and location, some of these features could not be fully inspected. Where accessible, features were checked and no evidence of bats was found, but many extended beyond the reach of the endoscope. There was no access to the loft space in this section of the building due to the storage of items beneath the hatch. Given the presence of potential roosting features, this section is considered to have high potential to support roosting bats. As not all features could be fully inspected, there is insufficient data at this time to conclude whether this section contains a bat roost.

4.3 POTENTIAL IMPACTS ON BATS

The proposed works have the potential to disturb or destroy a bat roost if bats are found to be roosting within the surveyed building sections. Therefore, further survey effort, in the form of nocturnal emergence and dawn re-entry bat surveys, is required to establish the presence/absence of roosting bats within the building. A recommendation regarding this further survey works is made in Chapter 5.

There is potential for any new lighting, either temporary or permanent, at the site to impact foraging and commuting bats. As such a recommendation regarding site illumination is made in Chapter 5.

The existing hedgerows and trees offer suitable foraging and commuting habitat for bats. The retention of these habitats mean any impacts on foraging and commuting bats will be minimal. However, the new soft landscaping associated with the new development poses opportunities to enhance the site for bats. A recommendation regarding possible site enhancement opportunities is made in Chapter 5.
5. **RECOMMENDATIONS**

All recommendations provided in this section are based on Middlemarch Environmental Ltd’s current understanding of the site proposals, correct at the time the report was compiled. Should the proposals alter, the conclusions and recommendations made in the report should be reviewed to ensure that they remain appropriate.

R1 Sections 1, 2 and 3
Sections 1, 2 and 3 have been identified as having high potential to support roosting bats. Bat Surveys: Good Practice Guidelines published by the Bat Conservation Trust (Collins, 2016) recommends that for buildings with high bat roosting potential at least three dusk emergence and/or dawn re-entry surveys be undertaken during the bat emergence/re-entry survey season to determine the presence/absence of roosting bats within the building. The bat emergence/re-entry survey season extends from May to September. At least two of the surveys should be undertaken during the peak season for emergence/re-entry surveys between May and August and one of the three surveys should be a dawn re-entry survey. If a roost is discovered during these surveys, a Natural England licence application may be required.

R2 Lighting
In line with paragraph 125 of the National Planning Policy Framework, the development should aim to limit the impact of light pollution on bats through the careful use of lighting in critical areas only and at a low level with minimum spillage. Any lighting, either temporary or permanent, along the site boundaries should be kept to a minimum and directed away from suitable foraging and commuting features to ensure there is no increase in light levels.

R3 Habitat Enhancement
In line with the National Planning Policy Framework, the development should aim to enhance the site for bats. Bat boxes should be installed to provide roosting habitat for species such as pipistrelle. In general, bats seek warm places and for this reason boxes should be located where they will receive full/partial sun, although installing boxes in a variety of orientations will provide a range of climatic conditions. Position boxes at least 3 m above ground to prevent disturbance from people and/or predators. The planting of species which attract night flying insects is encouraged as this will be of value to foraging bats, for example: evening primrose *Oenothera biennis*, goldenrod *Solidago virgaurea*, honeysuckle *Lonicera periclymenum* and fleabane *Pulicaria dysenterica*.
6. DRAWINGS

Drawing C122590-01 – Preliminary Bat Roost Assessment

Drawing 41583L-70_03 Rev 4 – Site Layout Option 3
REFERENCES AND BIBLIOGRAPHY

APPENDIX 1

LEGISLATION

Bats and the places they use for shelter or protection (i.e. roosts) receive European protection under The Conservation of Habitats and Species Regulations 2010, as amended (Habitats Regulations 2010, as amended). They receive further legal protection under the Wildlife and Countryside Act (WCA) 1981, as amended. This protection means that bats, and the places they use for shelter or protection, are capable of being a material consideration in the planning process.

Regulation 41 of the Habitats Regulations 2010 (as amended), states that a person commits an offence if they:

- deliberately capture, injure or kill a bat;
- deliberately disturb bats; or
- damage or destroy a bat roost (breeding site or resting place).

Disturbance of animals includes in particular any disturbance which is likely to impair their ability to survive, to breed or reproduce, or to rear or nurture their young, or in the case of animals of a hibernating or migratory species, to hibernate or migrate; or to affect significantly the local distribution or abundance of the species to which they belong.

It is an offence under the Habitats Regulations 2010 (as amended) for any person to have in his possession or control, to transport, to sell or exchange or to offer for sale, any live or dead bats, part of a bat or anything derived from bats, which has been unlawfully taken from the wild.

Whilst broadly similar to the above legislation, the WCA 1981 (as amended) differs in the following ways:

- Section 9(1) of the WCA makes it an offence to intentionally kill, injure or take any protected species.
- Section 9(4)(a) of the WCA makes it an offence to intentionally or recklessly* damage or destroy, or obstruct access to, any structure or place which a protected species uses for shelter or protection.
- Section 9(4)(b) of the WCA makes it an offence to intentionally or recklessly* disturb any protected species while it is occupying a structure or place which it uses for shelter or protection.

*Reckless offences were added by the Countryside and Rights of Way (CRoW) Act 2000.

As bats re-use the same roosts (breeding site or resting place) after periods of vacancy, legal opinion is that roosts are protected whether or not bats are present.

The following bat species are Species of Principal Importance for Nature Conservation in England: barbastelle bat *Barbastella barbastellus*, Bechstein’s bat *Myotis bechsteinii*, noctule *Nyctalus noctula*, soprano pipistrelle *Pipistrellus pygmaeus*, brown long-eared bat *Plecotus auritus*, greater horseshoe bat *Rhinolophus ferrumequinum* and lesser horseshoe bat *Rhinolophus hipposideros*.

All species which occur within the county are considered to be priority species on the Northamptonshire local BAP.

The reader should refer to the original legislation for the definitive interpretation.
ECOLOGY
At present, 18 species of bats are known to live within the United Kingdom, of which 17 species are confirmed as breeding. All UK bat species are classed as insectivorous, feeding on a variety of invertebrates including midges, mosquitoes, lacewings, moths, beetles and small spiders.

Bats will roost within a variety of different roosting locations, included houses, farm buildings, churches, bridges, walls, trees, culverts, caves and tunnels. At different times of the year the bats roosting requirements alter and they can have different roosting locations for maternity roosts, mating roosts and hibernation roosts. Certain bat species will also change roosts throughout the bat activity season with the bat colony using the site to roost for a few days, abandoning the roost and then returning a few days or weeks later. This change can be for a variety of reasons including climatic conditions and prey availability. Bats are known live for several years and if the climatic conditions are unfavourable at a particular roost, they may abandon it for a number of years, before returning when conditions change. Due to the matriarchal nature of bat colonies, the locations of these roosts can be passed down through the generations.

Bats usually start to come out of hibernation in March and early April (weather dependent), when they start to forage and replenish the body weight lost during the hibernation period. The female bats then start to congregate together in maternity roosts prior to giving birth and a single baby is born in June or July. The female then works hard to feed her young so that they can become independent and of a sufficient weight to survive the winter before the weather gets too cold and invertebrate activity reduces. Males generally live solitary lives, or in small groups with other males, although in some species the males can be found living with the females all year. The mating season begins in the autumn. During the winter bats hibernate in safe locations which provide relatively constant conditions, although they may venture outside to forage on warmer winter nights.
WOLLASTON PRIMARY SCHOOL,
COLLEGE STREET, WOLLASTON,
NORTHAMPTONSHIRE

PRE-DEVELOPMENT
ARBORICULTURAL SURVEY AND
IMPACT ASSESSMENT

A Report to: Northamptonshire County Council

Report No: RT-MME-122594-01

Date: June 2016

MIDDLEMARCH
ENVIRONMENTAL

Triumph House, Birmingham Road, Allesley, Coventry CV5 9AZ
Tel: 01676 525880 Fax: 01676 521400
E-mail: admin@middlemarch-environmental.com Web: www.middlemarch-environmental.com
REPORT VERIFICATION

This study has been undertaken in accordance with British Standard 5837:2012 “Trees in relation to design, demolition and construction - Recommendations”.

<table>
<thead>
<tr>
<th>Report Version</th>
<th>Date</th>
<th>Completed by:</th>
<th>Checked by:</th>
<th>Approved by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td>09/06/16</td>
<td>Edmund Lusk HND, PTI (Principal Arboricultural Consultant) and Ben Jones MSc GradCIEEM (Arboricultural Support Officer)</td>
<td>Tom Docker MSc, MCIIEEM (EcIA Manager)</td>
<td>Dr Philip Fermor CEnv, MCIIEEM (Managing Director)</td>
</tr>
</tbody>
</table>

DISCLAIMER

The contents of this report are the responsibility of Middlemarch Environmental Ltd. It should be noted that, whilst every effort is made to meet the client’s brief, no site investigation can ensure complete assessment or prediction of the natural environment.

Middlemarch Environmental Ltd accepts no responsibility or liability for any use that is made of this document other than by the client for the purposes for which it was originally commissioned and prepared.

VALIDITY OF DATA

The findings of this study are valid for a period of 12 months from the date of survey. If works have not commenced by this date, an updated site visit should be carried out by a suitably qualified and experienced arboriculturist to assess any changes to the trees, groups and hedgerows on site and to inform a review of the conclusions and recommendations made.

It should be noted that trees are dynamic living organisms that are subject to natural changes as they age or are influenced by changes in their environment. As such following any significant meteorological event or changes in the growing environment of the trees they should be re-assessed by a suitably qualified and experienced arboriculturist.
NON-TECHNICAL SUMMARY

Middlemarch Environmental Ltd was commissioned to prepare a combined arboricultural survey and impact assessment in respect of the proposed development of land at Wollaston Primary School in Wollaston, Northamptonshire. It is understood that the site will be the subject of a planning application for the construction of a new two-storey extension to provide three additional classrooms.

To fulfil the project brief a desk study and a field survey of the trees present on site were undertaken in June 2016.

The desk study exercise identified that none of the trees present on site are protected by a Tree Preservation Order and that the site is not situated within a Conservation Area.

The field survey was undertaken in June 2016 by Edmund Lusk (Principal Arboricultural Consultant). The survey identified that the site’s tree stock is primarily composed of early-mature and mature trees which are predominately in a fair condition.

The proposed development of the site will not require the removal of any trees. However some access facilitation pruning works to the crown of one Holly (Ilex aquifolium) tree within the site will be required to minimise the potential for branch damage to occur during development. The proposed access facilitation pruning works will not have an impact upon the visual character nor the long term health of the affected tree.

The proposed development does not require any works to be completed in close proximity to retained trees and whilst access to the site does pass through the Root Protection Areas of retained trees no impacts upon the trees will occur as the areas to be utilised will be protected by existing hardstanding or ground protection measures installed prior to the commencement of development.

To ensure the protection of trees selected for retention during the course of the proposed development it is recommended that the guidance set out in Sections 5 and 6 of this report are considered and that, during development of the site, the retained trees are protected by the erection of tree protection barriers to the specification set out in BS5837:2012.
CONTENTS

1. INTRODUCTION .. 4
 1.1 PROJECT BRIEF ... 4
 1.2 SITE DESCRIPTION ... 4
 1.3 DEVELOPMENT PROPOSALS .. 4
 1.4 DOCUMENTATION PROVIDED .. 4

2. METHODOLOGY ... 6
 2.1 DESK STUDY .. 6
 2.2 CONDITION STATUS ... 6
 2.3 ROOT PROTECTION AREA (RPA) ... 6

3. STATUTORY PROTECTION .. 7
 3.1 TREE PRESERVATION ORDER AND CONSERVATION AREA DESIGNATIONS 7
 3.2 PROTECTED SPECIES ... 7

4. SURVEY RESULTS ... 8
 4.1 WEATHER CONDITIONS AND PERSONNEL .. 8
 4.2 TREE SPECIES .. 8
 4.3 TREE QUALITY ... 8
 4.4 TREE SURVEY SCHEDULE .. 9
 4.5 ROOT PROTECTION AREA (RPA) ... 13

5. ARBORICULTURAL IMPACT ASSESSMENT .. 14
 5.1 INTRODUCTION .. 14
 5.2 IMPACTS FROM DEVELOPMENT LAYOUT .. 14
 5.2.1 Tree Removal ... 14
 5.2.2 Tree Pruning ... 14
 5.3 IMPACTS FROM DEMOLITION AND RELATED OPERATIONS 14
 5.3.1 Building Demolition .. 14
 5.3.2 Removal of Hard Surfaces .. 14
 5.3.3 Removal of Services ... 14
 5.4 DIRECT IMPACTS FROM CONSTRUCTION ... 14
 5.4.1 Works within RPAs .. 14
 5.4.2 Works within Canopy Spreads .. 14
 5.4.3 Working Space ... 14
 5.5 IMPACTS FROM CONSTRUCTION RELATED OPERATIONS 15
 5.5.1 Site Access .. 15
 5.5.2 Delivery and Storage of Materials .. 15
 5.5.3 Site Compound ... 15
 5.5.4 Contractor’s Parking .. 15
 5.6 POST-DEVELOPMENT IMPACTS .. 15
 5.6.1 Shading ... 15
 5.6.2 Privacy and Screening ... 15
 5.6.3 Direct Damage to Structures .. 16
 5.6.4 Future Pressure for Removal .. 16
 5.6.5 Seasonal Nuisance .. 16
 5.7 SUMMARY OF IMPACTS .. 16

6. MITIGATION AND PROTECTION .. 17
 6.1 INTRODUCTION .. 17
 6.2 GENERAL TREE PROTECTION ... 17
 6.2.1 Construction Exclusion Zone .. 17
 6.2.2 Tree Protection Barriers ... 17
 6.2.3 Ground Protection .. 17
 6.3 MITIGATION OR AVOIDANCE OF IMPACTS ... 17
 6.3.1 Design Amendments .. 17
 6.3.2 Site Setup and Logistics ... 17

7. RECOMMENDATIONS ... 18

8. DRAWINGS ... 19

REFERENCES AND BIBLIOGRAPHY .. 22

APPENDICES .. 23

APPENDIX 1 ... 24
APPENDIX 2 ... 27
1. **INTRODUCTION**

1.1 **PROJECT BRIEF**

In May 2016, Northamptonshire County Council commissioned Middlemarch Environmental Ltd to prepare a combined Arboricultural Survey and Impact Assessment in respect of the proposed development of land at Wollaston Primary School in Wollaston, Northamptonshire.

The proposed development of the site is the construction of a two storey extension to the existing primary school footprint, with one new classroom on the ground floor and two new classrooms above on the first floor.

The purpose of this report is to:

- Record the current condition of the trees found on the site and categorise them using criteria outlined in BS5837:2012 “Trees in relation to design, demolition and construction - Recommendations”.
- Provide a Tree Constraints Plan that identifies any constraints to development presented by the trees to include root protection areas for the retained trees as described in BS5837:2012.
- Provide guidance detailing arboricultural constraints to development and factors to be considered during the detailed design of the proposed development.
- Detail the impact that the proposed development will have upon the site’s existing tree stock and set out recommendations for the subsequent mitigation or avoidance of impact.

Middlemarch Environmental have also been commissioned to undertake a Preliminary Roost Assessment and an Arboricultural Method Statement for Northamptonshire County Council at this site. The findings of these surveys are detailed in Report Numbers RT-MME-122590 and RT-MME-122594-02 respectively.

1.2 **SITE DESCRIPTION**

The site under consideration is Wollaston Community Primary School, which is located in Wollaston, Northamptonshire. The site is roughly rectangular in shape, extends to 0.5 ha in size and is centred on Ordnance Survey Grid Reference SP 9079 6280.

At the time of the survey, the southern section of the site was dominated by the existing school buildings surrounded by areas of hard standing, whilst the northern section of the site is dominated by an amenity grass playing field. A number of scattered trees are present in the centre of the site.

The site has boundaries with College Street to the west and with South Street to the east. The main vehicular and pedestrian accesses to the site are provided from College Street and an emergency vehicle access point is provided off South Street. To the north and south the site extends to abut neighbouring residential properties.

The site is situated in the within a built up area and the surrounding landscape is dominated by a mixture of residential and commercial development. The wider landscape is dominated by agricultural land.

The locations of the trees surveyed can be found on Middlemarch Environmental Ltd Drawing Number C122594-01-01 in Section 8 of this report.

1.3 **DEVELOPMENT PROPOSALS**

The proposed development of the site is the construction of a three classroom, two storey extension to the existing primary school footprint, with one new classroom on the ground floor and two new classrooms above on the first floor.

1.4 **DOCUMENTATION PROVIDED**

This assessment is based upon the information provided by the client in addition to information collected by Middlemarch Environmental Ltd during a survey of the site undertaken in May 2016. The documents and drawings considered are detailed within Table 1.1.
Table 1.1: Documentation Provided

<table>
<thead>
<tr>
<th>Author</th>
<th>Document</th>
<th>Drawing Number</th>
<th>Date</th>
</tr>
</thead>
</table>
2. METHODOLOGY

2.1 DESK STUDY
A desk study was undertaken to identify if any of the trees present within or in close proximity to the site are covered by Tree Preservation Orders (TPOs) or if the site is situated within a Conservation Area. This involved consultation with the Local Planning Authority.

2.2 CONDITION STATUS
To determine the status of the trees within the site a full arboricultural survey has been undertaken, assessing the species and status of all trees present. This survey has been carried out in accordance with British Standard 5837:2012 ‘Trees in relation to design, demolition and construction – Recommendations’.

All trees have been assigned a unique reference number. Individual trees above 75 mm in diameter (at 1.5 m above ground level) have had their position plotted to a survey drawing. The trees were visually assessed and a schedule prepared listing: tree number, species, trunk diameter at 1.5 m above ground level (or in accordance with Annex C of BS5837:2012), tree height, crown spread (cardinal points), crown clearance (cardinal points), height of first branch and growth direction, age class and estimated remaining life expectancy in years. Measurements for tree height, first branch height, crown clearance and crown spread were taken to an accuracy of 0.5 m. Stem diameter measurements were recorded to the nearest 10 mm. Any specific observations or recommendations with regard to management were also noted. All these observations and measurements are summarised in Section 4.

Each tree was assessed and assigned to one of the following categories:

- **Category A**: Those trees of high quality and value with an estimated remaining life expectancy of at least 40 years.
- **Category B**: Those trees of moderate quality and value with an estimated remaining life expectancy of at least 20 years.
- **Category C**: Those trees of low quality and value with an estimated remaining life expectancy of at least 10 years or young trees with a stem diameter below 150 mm.
- **Category U**: Trees in such a condition that they cannot realistically be retained as living trees in the context of the current land use for longer than 10 years.

Categories A, B and C have further sub-categories with regards to the reasons for tree retention:

1: Mainly arboricultural qualities
2: Mainly landscape qualities
3: Mainly cultural values, including conservation.

2.3 ROOT PROTECTION AREA (RPA)
In order to avoid damage to the roots or rooting environment of retained trees, the RPA has been calculated for each of the Category A, B and C trees. This is a minimum area around a tree which is deemed to contain sufficient roots and rooting volume to maintain the tree’s viability. Protection of the roots and soil structure in this area should be treated as a priority.

These figures have been calculated utilising the formulas within Section 4.6 and Annex D of British Standard 5837:2012.
3. STATUTORY PROTECTION

3.1 TREE PRESERVATION ORDER AND CONSERVATION AREA DESIGNATIONS

A search undertaken on the 9th June 2016 using the 'In My Area' mapping service provided by the Borough Council of Wellingborough (http://lvfusion.wellingborough.gov.uk/LocalViewWeb/Sites/inmyarea/) did not identify any Tree Preservation Orders on the site and established that the site is not situated within a Conservation Area.

3.2 PROTECTED SPECIES

Bats

Mature trees often contain cavities, hollows, peeling bark or woodpecker holes which provide potential roosting locations for bats. Bats and the places they use for shelter or protection (i.e. roosts) receive European protection under The Conservation of Habitats and Species Regulations 2010 (Habitats Regulations 2010, as amended). They receive further legal protection under the Wildlife and Countryside Act (WCA) 1981, as amended. Consequently causing damage to a bat roost constitutes an offence.

Generally should the presence of a bat roost be suspected whilst completing works on any trees on site then an appropriately licensed bat worker should be consulted for advice.

Birds

Trees and hedgerows offer potential habitat for nesting birds which are protected under the Wildlife and Countryside Act WCA 1981 (as amended). Some species (listed in Schedule 1 of the WCA) are protected by special penalties. This legislation makes it an offence to intentionally or recklessly damage or destroy an active bird nest or part thereof.

As the trees on, and adjacent, to the site provide potential habitat for nesting birds all tree work should ideally be completed outside the nesting bird season (generally March to September).

If this is not possible then the vegetation should be subject to a nesting bird inspection by a suitably experienced ecologist prior to commencement of works. If any active nests are identified then the vegetation, and a defined buffer zone, will need to remain in place until the young have naturally fledged.
4. SURVEY RESULTS

4.1 WEATHER CONDITIONS AND PERSONNEL
The survey was completed on the 8th June 2016 by Edmund Lusk (Principal Arboricultural Consultant). The weather conditions at the time of the survey are shown in Table 4.1.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>14</td>
</tr>
<tr>
<td>Cloud Cover (%)</td>
<td>30</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Nil</td>
</tr>
<tr>
<td>Wind Speed (Beaufort)</td>
<td>F0</td>
</tr>
</tbody>
</table>

Table 4.1: Weather Conditions at Time of Survey

4.2 TREE SPECIES
Tree species recorded during the survey are listed in Table 4.2.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horse Chestnut</td>
<td>Aesculus hippocastanum</td>
</tr>
<tr>
<td>Holly</td>
<td>Ilex aquifolium</td>
</tr>
<tr>
<td>Ash</td>
<td>Fraxinus excelsior</td>
</tr>
<tr>
<td>Sycamore</td>
<td>Acer pseudoplatanus</td>
</tr>
<tr>
<td>Almond</td>
<td>Prunus dulcis</td>
</tr>
<tr>
<td>Silver Birch</td>
<td>Betula pendula</td>
</tr>
<tr>
<td>Norway Maple</td>
<td>Acer platanoides</td>
</tr>
<tr>
<td>Purple Leaved Plum</td>
<td>Prunus cerasifera 'Atropurpurea'</td>
</tr>
<tr>
<td>Rowan</td>
<td>Sorbus aucuparia</td>
</tr>
</tbody>
</table>

Table 4.2: Tree Species Recorded During Survey

4.3 TREE QUALITY

Retention Value
The initial stage of a tree survey in accordance to BS5837:2012 looks at the trees on the site in terms of life expectancy and condition. Trees are then categorised according to their retention value.

Category A trees are those that have been assessed as being of a high quality and value; significant amendments to the proposed scheme should be considered in preference to their removal. These trees are shown in Green on the Tree Constraints Plan.

Category B trees are those that have been assessed as being of a moderate quality and value; amendments to the proposed scheme should be considered in preference to their removal. These trees are shown in Blue on the Tree Constraints Plan.

Category C trees are those that have been assessed as being of a low quality and value; the loss of these specimens should not necessarily be considered as a constraint to development. These trees are shown in Grey on the Tree Constraints Plan.

Category U trees are those that have been assessed as having no retention value; these trees should not be a material consideration in the planning process. These trees are shown in Red on the Tree Constraints Plan.

Category A, B or C trees are those that should be a material consideration in the planning process whilst Category U trees are those which would be lost in the short term for reasons connected to their physiological or structural condition and hence they should not be a consideration in the planning process.
Overall eleven trees and one group of trees have been inspected in accordance with BS5837:2012 ‘Trees in relation to design, demolition and construction – Recommendations’.

A summary of the trees and groups in each of the four categories is given in Table 4.3.

<table>
<thead>
<tr>
<th>BS5837:2012 Category</th>
<th>Tree Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>1, 2, 8, 9.</td>
</tr>
<tr>
<td>C</td>
<td>3, 4, 5, 6, 7, 10, 11, G1.</td>
</tr>
<tr>
<td>U</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4.3: Summary of Trees and Groups in BS5837:2012 Categories

4.4 TREE SURVEY SCHEDULE

The full results of the Arboricultural Assessment are detailed in Table 4.4.
Table 4.4: Results of Arboricultural Survey (continues)

<table>
<thead>
<tr>
<th>Tree No.</th>
<th>Species</th>
<th>No. Stems</th>
<th>Diam (mm)</th>
<th>H't (m)</th>
<th>H't 1st Branch (m)</th>
<th>Branch Spread (m)</th>
<th>Crown Clearance (m)</th>
<th>Age</th>
<th>Phys Cond</th>
<th>Struc Cond</th>
<th>Est. Remain Contrib (Years)</th>
<th>Cat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horse Chestnut</td>
<td>1</td>
<td>610</td>
<td>15.0</td>
<td>2.0</td>
<td>W 6.0</td>
<td>6.5</td>
<td>6.0</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Horse Chestnut</td>
<td>1</td>
<td>720</td>
<td>15.0</td>
<td>2.5</td>
<td>S 6.0</td>
<td>5.0</td>
<td>5.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Holly</td>
<td>1</td>
<td>130</td>
<td>7.0</td>
<td>3.0</td>
<td>S 1.5</td>
<td>1.5</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Ash</td>
<td>1</td>
<td>140</td>
<td>9.0</td>
<td>5.0</td>
<td>N 3.0</td>
<td>1.5</td>
<td>1.5</td>
<td>2.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Sycamore</td>
<td>3</td>
<td>340</td>
<td>9.0</td>
<td>4.0</td>
<td>N 4.0</td>
<td>2.5</td>
<td>2.5</td>
<td>3.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Tree No.</td>
<td>Species</td>
<td>No. Stems</td>
<td>Diam (mm)</td>
<td>H’t (m)</td>
<td>H’t 1st Branch (m)</td>
<td>Branch Spread (m)</td>
<td>Crown Clearance (m)</td>
<td>Age</td>
<td>Phys Cond</td>
<td>Struc Cond</td>
<td>Est. Remain Contrib (Years)</td>
<td>Cat</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>-----</td>
<td>--</td>
</tr>
</tbody>
</table>
| 6 | Almond | 1 | 350 | 7.0 | 3.0 | 3.0 | 2.0 1.5 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | M | F F F 10+
| | | | | | E | | | M | F | F | | | Minor deadwood and branch dieback in crown.
| | | | | | | | | | | | Hard surfaces and wall within RPA.
| | | | | | | | | | | | Low crown density.
| | | | | | | | | | | | Small quantity of major deadwood in crown.
| | | | | | | | | | | | In declining condition.
| 7 | Holly | 1 | 180 | 7.0 | 0.0 | 2.0 | 2.0 1.5 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | EM | F F F 10+
| | | | | | S | | | | | | Bifurcate at 1.8 m with included bark at stem union.
| | | | | | | | | | | | Epicormic growth at base.
| | | | | | | | | | | | Reduced crown density.
| | | | | | | | | | | | Hard surfaces and wall within RPA.
| 8 | Silver Birch | 1 | 220 | 9.5 | 3.5 | 2.5 | 2.5 2.0 2.5 | 3.0 | 2.0 | 2.0 | 3.0 | EM | G G 20+
| | | | | | S | | | | | | Hard surfaces within RPA.
| | | | | | | | | | | | Soil compaction within RPA.
| 9 | Norway Maple | 1 | 670 | 18.0 | 2.0 | 8.0 | 7.5 6.0 7.5 | 3.0 | 3.0 | 4.0 | 4.0 | M | G G 20+
| | | | | | S | | | | | | Hard surfaces within RPA.
| | | | | | | | | | | | Cavity at 1.5m on southern side of stem.
| | | | | | | | | | | | Cavity is approximately 80mm x150mm x 100mm deep.
| 10 | Purple Leaved Plum | 7 | 410 | 6.5 | 0.5 | 4.5 | 4.0 3.5 4.0 | 2.0 | 2.0 | 2.0 | 2.0 | M | F F 10+
| | | | | | S | | | | | | Minor deadwood and branch dieback in crown.
| | | | | | | | | | | | Multi-stemmed at 1.0 m with included bark at stem unions.
| | | | | | | | | | | | Hard surfaces in RPA.
| 11 | Rowan | 4 | 210 | 5.0 | 1.0 | 2.5 | 2.5 3.0 3.0 | 2.0 | 1.5 | 2.0 | 2.0 | EM | F F 10+
| | | | | | E | | | | | | Trifurcate at 0.5 m with included bark at stem unions.
| | | | | | | | | | | | Low crown density.
| | | | | | | | | | | | Hard surfaces in RPA.
| | | | | | | | | | | | Minor deadwood in crown.

Table 4.4 (cont’d): Results of Arboricultural Survey (continues)
<table>
<thead>
<tr>
<th>Tree No.</th>
<th>Species</th>
<th>No. Stems</th>
<th>Diam (mm)</th>
<th>H't (m)</th>
<th>H't 1st Branch (m)</th>
<th>Branch Spread (m)</th>
<th>Crown Clearance (m)</th>
<th>Age</th>
<th>Phys Cond</th>
<th>Struc Cond</th>
<th>Est. Remain Contrib (Years)</th>
<th>Cat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Ash</td>
<td>1</td>
<td>120</td>
<td>7.0</td>
<td>2.5</td>
<td>N</td>
<td>2.0</td>
<td>2.0</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>Y</td>
<td>F</td>
</tr>
</tbody>
</table>

Key

Age Class
- Y: Young = tree within first third of average life expectancy
- EM: Early mature = tree within second third of average life expectancy
- M: Mature = tree within final third of average life expectancy
- OM: Over mature = tree beyond average life expectancy

Physiological Condition
- G: Good = no health problems
- F: Fair = symptoms of ill health that may be remedied
- P: Poor = poor health

Structural Condition
- G: Good = no structural defects
- F: Fair = remedial structural defects
- P: Poor = significant structural defects

RPA: Root Protection Area

Table 4.4 (cont'd): Results of Arboricultural Survey
4.5 **ROOT PROTECTION AREA (RPA)**

Table 4.5 provides details of the Root Protection Area (RPA) of all trees and groups surveyed which were classified as Category A, B or C specimens. This table also gives an approximate root protection radius for these trees.

<table>
<thead>
<tr>
<th>Tree No.</th>
<th>Species</th>
<th>Diameter (mm)</th>
<th>Approximate Root Protection Radius (m)</th>
<th>Root Protection Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horse Chestnut</td>
<td>610</td>
<td>7.5</td>
<td>177</td>
</tr>
<tr>
<td>2</td>
<td>Horse Chestnut</td>
<td>720</td>
<td>8.7</td>
<td>238</td>
</tr>
<tr>
<td>3</td>
<td>Holly</td>
<td>130</td>
<td>1.8</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Ash</td>
<td>140</td>
<td>1.8</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Sycamore</td>
<td>340</td>
<td>4.2</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Almond</td>
<td>350</td>
<td>4.2</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>Holly</td>
<td>180</td>
<td>2.4</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>Silver Birch</td>
<td>220</td>
<td>2.7</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>Norway Maple</td>
<td>670</td>
<td>8.1</td>
<td>206</td>
</tr>
<tr>
<td>10</td>
<td>Purple Leaved Plum</td>
<td>410</td>
<td>5.1</td>
<td>81</td>
</tr>
<tr>
<td>11</td>
<td>Rowan</td>
<td>210</td>
<td>2.7</td>
<td>23</td>
</tr>
<tr>
<td>G1</td>
<td>Ash</td>
<td>120</td>
<td>1.5*</td>
<td>7*</td>
</tr>
</tbody>
</table>

Key:

*: Around centre of each tree within group.

Table 4.5: RPA and Approximate Root Protection Radius of Category A, B and C Trees and Groups Surveyed
5. ARBORICULTURAL IMPACT ASSESSMENT

5.1 INTRODUCTION

This section of the report details the potential impacts that the proposed development may have upon the site’s tree stock. The assessment has been based upon the documents detailed in Table 1.1 with reference to the results of the field survey undertaken in June 2016.

The location of the trees can be found on Drawing Number C122594-01-01 in Section 8 and a schedule of the trees surveyed can be found within Section 4.

5.2 IMPACTS FROM DEVELOPMENT LAYOUT

5.2.1 Tree Removal

The proposed development does not require the removal of any existing trees on the site.

5.2.2 Tree Pruning

To minimise the potential for branch damage to occur to the crown of tree number 7, a Holly, due to plant and vehicle movement within the site, it is recommended that this tree is crown lifted to a height of 3.5 m above ground level on the northern side.

These works will be of a minor extent and they are routine in nature. As such it is not considered that they will have a significant impact upon the long-term health, or visual quality, of the tree.

All tree pruning works should be completed in accordance with the current best practice guidance set out within BS3998:2010 “Tree Work – Recommendations” by suitably qualified and insured arboricultural contractors.

5.3 IMPACTS FROM DEMOLITION AND RELATED OPERATIONS

5.3.1 Building Demolition

The proposed development will not require the demolition of the existing buildings on site. As such no impacts upon trees are anticipated.

5.3.2 Removal of Hard Surfaces

The proposed development will not require the removal of any existing hard surfaces within the Root Protection Areas of retained trees.

5.3.3 Removal of Services

There are no areas on site where the removal of existing underground services are likely to require works within the RPAs of retained trees.

5.4 DIRECT IMPACTS FROM CONSTRUCTION

5.4.1 Works within RPAs

The proposed development does not require any works to be completed within the Root Protection Area of any retained tree.

5.4.2 Works within Canopy Spreads

The proposed development does not require any works to be completed within the canopy spread of any retained tree.

5.4.3 Working Space

Working space for the construction of the proposed development will not encroach upon the Root Protection Area of any retained tree.
5.5 IMPACTS FROM CONSTRUCTION RELATED OPERATIONS

5.5.1 Site Access

The proposed access route for construction of the proposed development has not been determined at this stage. However a review of the site shows that two potential access routes exist.

The first potential access route to the area of the proposed extension is via the existing College Street car park entrance with construction access then progressing through the playground, around the recently completed sports hall extension, and along the corridor between the sports hall and the Way Building. The entirety of this route is hard surfaced and construction traffic will only pass within the Root Protection Areas of tree numbers 5, 6 and 7. No harm to the trees is likely to occur as the existing hard surfaces will protect underlying roots from harm and the existing wall between the trees and the sports hall will protect them from potential impact damage. However as noted in Section 5.2.2 it will be necessary to undertake some minor pruning works to the crown of tree number 7 to minimise the potential for branch damage to occur.

The second potential access route to the site of the proposed extension is via the emergency access off South Street. Construction vehicles would access the playing field from this point and then progress over the playing field to the playground along a route which passes between the existing timber gazebo and tree number 9. Once within the playground construction traffic would follow the route past the sports hall and the Way Building described above. As with the first access route option the potential for harm to occur to tree numbers 5, 6 and 7 would be minimal due to the presence of existing hard surfaces within their Root Protection Areas and the protection offered by the existing wall. However where vehicles would pass within the Root Protection Area of tree number 9 they would pass over an area of soft surfaced amenity grassland. As such to prevent soil compaction and damage occurring to the root system of this tree it would be necessary to install ground protection measures in this location.

In either scenario it is considered that, subject to the installation of appropriate protective measures, the potential for harm to occur to retained trees is negligible.

5.5.2 Delivery and Storage of Materials

The proposed locations for the delivery and storage of materials within the site have not been identified at this stage. However it can be seen that there are numerous areas across the site where materials could be delivered to and stored on areas of existing hardstanding in locations away from retained trees. On this basis, so long as not materials are stored within the Root Protection Area of any retained tree, it is considered that no harm will occur.

5.5.3 Site Compound

The proposed location for a site compound has not been determined at this stage. There are numerous hard surfaced areas across the site where a site compound can be accommodated, if required, which are outside of the Root Protection Areas of retained trees. As such it is not anticipated that this aspect of the development has significant potential to cause harm to retained trees.

5.5.4 Contractor’s Parking

Locations for contractor’s parking have not been identified at this stage. Any parking within the site must only occur on areas of existing hardstanding outside the Root Protection Areas of retained trees.

5.6 POST-DEVELOPMENT IMPACTS

5.6.1 Shading

The nature of the proposed development is such that significant conflict due to shading by retained trees is unlikely to occur.

5.6.2 Privacy and Screening

The proposed development does not require the removal of any trees that contribute to privacy and screening of the site. As such no impact is anticipated.
5.6.3 Direct Damage to Structures
There are no areas on site where the proposed development will be in such close proximity to retained trees that damage is likely to occur.

5.6.4 Future Pressure for Removal
It is not considered that the proposed development will result in future pressure for the removal of any existing trees as no conflict between the development and existing trees is evident.

5.6.5 Seasonal Nuisance
It is not considered that a significant degree of seasonal nuisance will occur.

5.7 SUMMARY OF IMPACTS
In summary it is considered that the proposed development of the site will not have an impact upon the visual amenity of the local area as no tree removal is required for its implementation and only minor tree pruning works will be required.

Additionally there are no areas where works likely to cause harm to retained trees will occur within their Root Protection Areas. Whilst construction access will pass through the Root Protection Areas of several retained trees these will be fully protected from harm by the adoption of appropriate protective measures during development.
6. MITIGATION AND PROTECTION

6.1 INTRODUCTION
This section of the report details the initial protection, mitigation and avoidance measures suggested to prevent harm to the retained trees.

6.2 GENERAL TREE PROTECTION

6.2.1 Construction Exclusion Zone
To minimise the potential for harm to occur to the root systems and canopies of retained trees during development it will be necessary to implement construction exclusion zones throughout the site. These are areas surrounding the trees’ RPAs and canopies in which no construction works, or related activities, will be undertaken.

It is recommended that the exclusion zones are afforded protection at all times through the use of tree protection barriers and/or ground protection (specified in accordance with BS5837:2012). No works that cause compaction of the soil or severance of tree roots, except where undertaken in accordance with the guidance provided within this document, will be undertaken within any exclusion zone.

6.2.2 Tree Protection Barriers
The protective barriers should be erected prior to the commencement of any site works e.g. before any materials or machinery are brought on site or the stripping of soil commences.

Drawing Number C122594-01-02, in Section 8, provides a Draft Tree Protection Plan indicating the potential location of protective barriers.

The protective barriers are to be constructed in accordance with the specification detailed in BS5837:2012 (Figure 2, Appendix 2). Any variation to the specification of the protective barrier will be agreed with the County Planning Authority Arboricultural Officer.

6.2.3 Ground Protection
Ground protection measures will need to be installed within the Root Protection Area of tree number 9 if construction access is obtained from the South Street. The specification of the ground protection measures to be installed, if required, will be detailed within the Arboricultural Method Statement for the proposed development; RT-MME-122594-02.

6.3 MITIGATION OR AVOIDANCE OF IMPACTS

6.3.1 Design Amendments
It is not considered that the design of the proposed development requires amendment as no works likely to have an impact upon retained trees are being proposed.

6.3.2 Site Setup and Logistics
Prior to commencement of development a plan should be prepared detailing the locations in which activities related to the establishment of a site compound, contractor’s car parking areas, material storage areas and associated works are to occur. All such areas should be located outside of the RPAs of retained trees.
7. RECOMMENDATIONS

An Arboricultural Method Statement will be required for the site as details regarding the logistics for construction of the proposed development have not been determined at this stage.

The purpose of a method statement is to ensure that all site operations can occur with minimal risk of adverse impact upon trees that are to be retained. The document will identify all areas where specific working methods will be required to ensure protection to trees. The document will also specify in detail the final locations and extent of tree protection barriers and ground protection.

In relation to this development the method statement should address the following:

- Details of how the site will be accessed for construction of the proposed development.
- Final material storage and site compound locations.
- Final protective barrier and ground protection locations and specifications.
- Pre-commencement site meeting and schedule of auditing of tree protection measures.
8. DRAWINGS

Drawing Number C122594-01-01 – Tree Constraints Plan

Drawing Number C122594-01-02 – Draft Tree Protection Plan
REFERENCES AND BIBLIOGRAPHY

APPENDICES

APPENDIX 1: Headings for Protective Barrier Notices and Example Protection Sign
APPENDIX 2: Details of Protective Barrier
APPENDIX 1

Headings for Protective Barrier Notices
Root Protection Area (RPA) Model Notice

DON'T excavate within this area
DON'T use any form of mechanical plant with this area
DON'T store materials, plant or equipment within this area
DON'T move plant or vehicles within this area

DO contact the Local Authority Arboricultural Officer or owner of the tree if excavation within this area is unavoidable
DO protect any exposed roots uncovered within this area with dry sacking
DO backfill with a suitable inert granular and top soil material mix as soon as possible on completion of work

ANY WORK in this area requires a permit from the Local Authority Arboricultural Officer
PROTECTIVE FENCING. THIS FENCING MUST BE MAINTAINED IN ACCORDANCE WITH THE APPROVED PLANS AND DRAWINGS FOR THIS DEVELOPMENT.

TREE PROTECTION AREA
KEEP OUT!
(TOWN & COUNTRY PLANNING ACT 1990)
TREES ENCLOSED BY THIS FENCE ARE PROTECTED BY PLANNING CONDITIONS AND/OR ARE THE SUBJECTS OF A TREE PRESERVATION ORDER. CONTRAVENTION OF A TREE PRESERVATION ORDER MAY LEAD TO CRIMINAL PROSECUTION

ANY INCURSION INTO THE PROTECTED AREA MUST BE WITH THE WRITTEN PERMISSION OF THE LOCAL PLANNING AUTHORITY
APPENDIX 2

Details of Protective Barrier
Figure 2 Default specification for protective barrier

Key
1 Standard scaffold poles
2 Heavy gauge 2 m tall galvanized tube and welded mesh infill panels
3 Panels secured to uprights and cross-members with wire ties
4 Ground level
5 Uprights driven into the ground until secure (minimum depth 0.6 m)
6 Standard scaffold clamps
WOLLASTON PRIMARY SCHOOL, NORTHAMPTONSHIRE

NOCTURNAL EMERGENCE AND DAWN RE-ENTRY BAT SURVEYS

A Report to: Northamptonshire County Council

Report No: RT-MME-122917

Date: August 2016
REPORT VERIFICATION AND DECLARATION OF COMPLIANCE

<table>
<thead>
<tr>
<th>Report Version</th>
<th>Date</th>
<th>Completed by:</th>
<th>Checked by:</th>
<th>Approved by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td>12/08/2016</td>
<td>Dr Philip Fermor CEnv MCIEEM (Managing Director)</td>
<td>Tim Hextell MCIEEM (Principal Technical Ecological Consultant)</td>
<td>Dr Katy Read CEnv MCIEEM MCIWEM C.WEM DipSM (Executive Director)</td>
</tr>
</tbody>
</table>

The information which we have prepared is true, and has been prepared and provided in accordance with the Chartered Institute of Ecology and Environmental Management's Code of Professional Conduct. We confirm that the opinions expressed are our true and professional bona fide opinions.

DISCLAIMER

The contents of this report are the responsibility of Middlemarch Environmental Ltd. It should be noted that, whilst every effort is made to meet the client's brief, no site investigation can ensure complete assessment or prediction of the natural environment.

Middlemarch Environmental Ltd accepts no responsibility or liability for any use that is made of this document other than by the client for the purposes for which it was originally commissioned and prepared.

VALIDITY OF DATA

The findings of this study are valid for a period of 12 months from the date of survey. If works have not commenced by this date, an updated site visit should be carried out by a suitably qualified ecologist to assess any changes in the habitats present on site, and to inform a review of the conclusions and recommendations made.
NON-TECHNICAL SUMMARY

In June 2016, Northamptonshire County Council commissioned Middlemarch Environmental Ltd to undertake nocturnal emergence and dawn re-entry bat surveys at Wollaston Primary School in Wollaston, Northamptonshire. These surveys are required to inform a planning application associated with the proposed construction of a two-storey extension to the existing primary school footprint, with one new classroom on the ground floor and two new classrooms on the first floor.

The school was a single-storey, brick building with a multiple pitched, complex roof of various heights and ages. The proposed works will affect only a small area of the building (Sections 1, 2 and 3), and as such only these sections were surveyed during the Preliminary Bat Roost Assessment. Sections 1, 2 and 3 were generally in good condition. However, numerous potential ingress opportunities for bats were identified. Due to their height and location, some of these features could not be fully inspected. No evidence of bats was recorded during the internal assessment of these sections, however the loft spaces and roof voids could not be accessed. Given the presence of potential roosting features, these sections were considered to have high potential to support roosting bats. As not all features could be fully inspected, there was insufficient data at the time to conclude whether these sections contain a bat roost.

Therefore, nocturnal emergence and dawn re-entry bat surveys were undertaken between 28th June and 26th July 2016. One bat species was recorded during the surveys; common pipistrelle. No bats emerged from or re-entered the surveyed sections of the building. Commuting and foraging activity was recorded during the survey period. This was predominantly around the tree located on the southern boundary.

Given that no bats emerged from or re-entered any of the surveyed sections of the building and the limited amount of bat activity that was recorded on site during the surveys, it is concluded that there are no bat roosts present in the surveyed sections of the building on site.

Following the results of the nocturnal emergence and dawn re-entry surveys, the following recommendations have been made:

R1 Sections 1, 2 and 3
Sections 1, 2 and 3 have been subject to a full suite of activity surveys in line Bat Surveys for Professional Ecologists: Good Practice Guidelines (Collins, 2016), and no bat roosts were identified. The survey data obtained for the site is valid for 12 months from the survey date. In the unlikely event that a bat is found during site works all works in that area must immediately cease and a suitably qualified ecologist should be contacted.

R2 Lighting
The development should aim to limit the impact of light pollution on bats through the careful use of lighting in critical areas only and at a low level with minimum spillage. Any lighting, either temporary or permanent, along the site boundaries should be kept to a minimum and directed away from suitable foraging and commuting features to ensure there is no increase in light levels.

R3 Habitat Enhancement
The development should aim to enhance the site for bats. This may include the provision of roosting habitat through the installation of bat boxes on trees without exiting roosting features or on the new building. The planting of species which attract night flying insects is encouraged as this will be of value to foraging bats.
CONTENTS

1. INTRODUCTION .. 4
 1.1 PROJECT BACKGROUND .. 4
 1.2 SITE DESCRIPTION AND CONTEXT ... 4
 1.3 DOCUMENTATION PROVIDED .. 4

2. METHODOLOGY .. 5
 2.1 FIELD SURVEYS ... 5
 2.1.1 Overview of Nocturnal Emergence and Dawn Re-entry Surveys 5
 2.1.2 Nocturnal Emergence Bat Surveys .. 5
 2.1.3 Dawn Re-Entry Bat Survey ... 5

3. SURVEY RESULTS ... 6
 3.1 FIRST NOCTURNAL EMERGENCE SURVEY .. 6
 3.2 SECOND NOCTURNAL EMERGENCE SURVEY ... 6
 3.3 DAWN RE-ENTRY SURVEY ... 7

4. DISCUSSION AND CONCLUSIONS .. 8
 4.1 DISCUSSION ... 8
 4.1.1 Summary of Proposals ... 8
 4.1.2 Summary of Nocturnal Emergence and Dawn Re-entry Surveys 8
 4.2 CONCLUSIONS .. 8

5. RECOMMENDATIONS ... 9

6. DRAWINGS .. 10

REFERENCES AND BIBLIOGRAPHY .. 15
APPENDIX 1 ... 16
1. **INTRODUCTION**

1.1 **PROJECT BACKGROUND**

In June 2016, Northamptonshire County Council commissioned Middlemarch Environmental Ltd to undertake nocturnal emergence and dawn re-entry bat surveys at Wollaston Primary School in Wollaston, Northamptonshire. These surveys are required to inform a planning application associated with the proposed construction of a two-storey extension to the existing primary school footprint, with one new classroom on the ground floor and two new classrooms on the first floor.

Middlemarch Environmental Ltd has previously carried out the following surveys for Northamptonshire County Council at this site:

- Preliminary Bat Roost Assessment (Report RT-MME-122590);
- Pre-development Arboricultural Survey and Impact Assessment (Report RT-MME-122594-01); and,

The school was a single-storey, brick building with a multiple pitched, complex roof of various heights and ages. The proposed works will affect only a small area of the building (Sections 1, 2 and 3), and as such only these sections were surveyed during the Preliminary Bat Roost Assessment. Sections 1, 2 and 3 were generally in good condition. However, numerous potential ingress opportunities for bats were identified. Due to their height and location, some of these features could not be fully inspected. No evidence of bats was recorded during the internal assessment of these sections, however the loft spaces and roof voids could not be accessed. Given the presence of potential roosting features, these sections were considered to have high potential to support roosting bats. As not all features could be fully inspected, there was insufficient data at the time to conclude whether these sections contain a bat roost.

Therefore, nocturnal emergence and dawn re-entry bat surveys were recommended. This report details the results of the surveys undertaken between 28th June and 26th July 2016.

All UK bat species are European protected species and they are capable of being material considerations in the planning process. A summary of the legislation protecting bats is included within Appendix 1. This section also provides some brief information on the ecology of British bat species.

1.2 **SITE DESCRIPTION AND CONTEXT**

The site is located off College Street in Wollaston, Northamptonshire, centred at National Grid Reference SP 9079 6280. The site is roughly rectangular in shape and measures approximately 0.5 ha in size.

At the time of the survey, the site comprised Wollaston Primary School; school buildings with associated hardstanding playground, footpaths and car parking areas. Scattered trees, shrubs and hedges were located around the perimeter of the site.

The site was bordered by residential properties to the north and south, an area of amenity grassland to the east and College Street to the west. The wider landscape is dominated by a mix of residential dwellings and industrial units, interspersed with recreational grounds and surrounded by agricultural land.

1.3 **DOCUMENTATION PROVIDED**

The conclusions and recommendations made in this report are based on information provided by the client regarding the scope of the project. Documentation made available by the client is listed in Table 1.1.

<table>
<thead>
<tr>
<th>Document Name / Drawing Number</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topographical Survey: 15927</td>
<td>Global Surveys</td>
</tr>
<tr>
<td>Feasibility Study – Site Layout Option 3: 41583L-70_03 Rev 4</td>
<td>Darnton B3 Architects</td>
</tr>
</tbody>
</table>

Table 1.1: Documentation Provided by Client

The ‘Site Layout Option 3’ drawing is included in Chapter 6.
2. METHODOLOGY

2.1 FIELD SURVEYS

2.1.1 Overview of Nocturnal Emergence and Dawn Re-entry Surveys
The building was classed as having high potential to support roosting bats due to the numerous features of potential interest to roosting bats identified during the daytime survey. In line with Bat Surveys for Professional Ecologists: Good Practice Guidelines (Collins, 2016), three bat surveys were carried out consisting of two nocturnal emergence bat surveys and one dawn re-entry bat survey. The aim of these surveys was to detect whether bats are roosting within the buildings, and to enable a profile of site utilisation by bats to be compiled.

2.1.2 Nocturnal Emergence Bat Surveys
In line with the specifications detailed Bat Surveys: Good Practice Guidelines (Collins, 2016), two nocturnal emergence bat surveys were conducted on site. The surveys commenced 20 minutes prior to sunset and continued until 120 minutes after sunset. The nocturnal emergence surveys were conducted using electronic bat detectors (Bat Box Griffin and Bat Box Duet with associated recording devices) to facilitate the detection of bats and to aid in the determination of species of bat using the site. Subsequent computer analysis of recordings allowed all species of bat using the site to be identified.

2.1.3 Dawn Re-Entry Bat Survey
Bats swarm at their roost site 10-90 minutes prior to entering the roost at dawn (Mitchell-Jones & McLeish, 2004). Surveying for dawn swarming by bats is an efficient way of detecting bat roosts. In line with the specifications detailed by Bat Surveys: Good Practice Guidelines (Collins, 2016) the dawn survey commenced 120 minutes prior to sunrise and continued until sunrise. To facilitate the detection of bats and to aid in the determination of species of bat using the site, the dawn survey was conducted using electronic bat detectors (Bat Box Griffin and Bat Box Duet with associated recording devices). Computer analysis of bat detector information collected was utilised to identify all species recorded on the site.
3. **SURVEY RESULTS**

3.1 **FIRST NOCTURNAL EMERGENCE SURVEY**

The first nocturnal emergence survey was undertaken on 28th June 2016 by Dr Philip Fermor (Managing Director), Ben Jones (Field Assistant) and Lucy Grant (Field Assistant). The weather conditions recorded at the time of the survey are detailed in Table 3.1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>Start</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Cloud Cover (%)</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>Nil</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>Wind Speed (Beaufort)</td>
<td>F2</td>
<td>F1</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1: Weather Conditions During First Nocturnal Emergence Survey

The nocturnal emergence survey commenced 20 minutes prior to sunset and continued until 120 minutes after sunset. Sunset was at 21:28 hrs (BBC Weather Centre Data for Wollaston). One species of bat, common pipistrelle *Pipistrellus pipistrellus*, was recorded during the survey. Survey results are plotted on Drawing C122917-01 in Chapter 6.

Common pipistrelle

At 22:07 (39 minutes after sunset), a common pipistrelle entered the site from the south and began foraging around the tree located on the southern boundary. Foraging activity was recorded intermittently in this area, with occasional passes around the eastern aspect of the building, until the end of the survey.

No other species of bat were detected or observed during this survey. Analysis of the sound recordings did not identify any further species of bat. No bats emerged from or re-entered the surveyed sections of the building.

3.2 **SECOND NOCTURNAL EMERGENCE SURVEY**

The second nocturnal emergence survey was undertaken on 11th July 2016 by Dr Philip Fermor, Ben Jones and Lucy Grant. The weather conditions recorded at the time of the survey are detailed in Table 3.2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>Start</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Cloud Cover (%)</td>
<td>30</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>Nil</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>Wind Speed (Beaufort)</td>
<td>F2</td>
<td>F2</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2: Weather Conditions During Second Nocturnal Emergence Survey

The nocturnal emergence survey commenced 20 minutes prior to sunset and continued until 120 minutes after sunset. Sunset was at 21:23 hrs (BBC Weather Centre Data for Wollaston). One species of bat, common pipistrelle, was recorded during the survey. Survey results are plotted on Drawing C122917-02 in Chapter 6.

Common pipistrelle

At 21:56 (33 minutes after sunset), a common pipistrelle entered the site from the south and foraged around the tree located on the southern boundary for approximately 2 minutes before it exited the site to the south.

No other species of bat were detected or observed during this survey. Analysis of the sound recordings did not detect any further species of bat. No bats emerged from or re-entered the surveyed sections of the building.
3.3 DAWN RE-ENTRY SURVEY

The dawn re-entry bat survey was undertaken on 26th July 2016 by Dr Philip Fermor, Sian Comlay (Ecological Project Assistant) and Ben Jones. The weather conditions recorded at the time of the survey are detailed in Table 3.3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>13</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Cloud Cover (%)</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>Nil</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>Wind Speed (Beaufort)</td>
<td>F1</td>
<td>F0-1</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.3: Weather Conditions During Dawn Re-entry Survey

The dawn re-entry survey commenced 120 minutes prior to sunrise and continued until sunrise. Sunrise was at 05:23 hrs (BBC Weather Centre Data for Wollaston). One species of bat, common pipistrelle, was recorded during the survey. Survey results are plotted on Drawing C122917-03 in Chapter 6.

Common pipistrelle

At 05:02 (21 minutes before sunrise), a common pipistrelle was detected as it commuted across the site from east to west. It flew between the school buildings and exited the site to the south.

No other species of bat were detected or observed during this survey. Analysis of the sound recordings did not detect any further species of bat. No bats emerged from or re-entered the surveyed sections of the building.
4. DISCUSSION AND CONCLUSIONS

4.1 DISCUSSION

4.1.1 Summary of Proposals
Proposals involve the construction of a two-storey extension to the existing primary school footprint, with one new classroom on the ground floor and two new classrooms on the first floor.

4.1.2 Summary of Nocturnal Emergence and Dawn Re-entry Surveys

Nocturnal Emergence Surveys
One bat species was recorded during the nocturnal surveys; common pipistrelle. No bats emerged from or re-entered the surveyed sections of the building. Commuting and foraging activity was recorded during the survey period. This was predominantly around the tree located on the southern boundary.

Dawn Re-entry Survey
One bat species was recorded during the nocturnal survey; common pipistrelle. No bats emerged from or re-entered the surveyed sections of the building. Commuting activity was recorded during the survey period. This was limited to a single pass.

4.2 CONCLUSIONS

Given that no bats emerged from or re-entered any of the surveyed sections of the building and the limited amount of bat activity that was recorded on site during the surveys, it is concluded that there are no bat roosts present in the surveyed sections of the building on site. Therefore, the proposed works are not expected to impact roosting bats, and as such the works may proceed as scheduled.

The Site Layout Plan shows the majority of existing trees are to be retained as part of the new development. Therefore, the impact on foraging and commuting habitat is considered to be negligible. To increase the value of the site for bats, a recommendation is made in Chapter 5 regarding suitable plant species to incorporate into the soft landscaping to attract night flying insects.

There is also the potential for any new lighting, either temporary or permanent, at the site to impact foraging and commuting bats. Therefore, a recommendation regarding site illumination is made in Chapter 5.
5. **RECOMMENDATIONS**

All recommendations provided in this section are based on Middlemarch Environmental Ltd’s current understanding of the site proposals, correct at the time the report was compiled. Should the proposals alter, the conclusions and recommendations made in the report should be reviewed to ensure that they remain appropriate.

R1 Sections 1, 2 and 3
Sections 1, 2 and 3 have been subject to a full suite of activity surveys in line Bat Surveys for Professional Ecologists: Good Practice Guidelines (Collins, 2016), and no bat roosts were identified. The survey data obtained for the site is valid for 12 months from the survey date. If development works to the surveyed building have not commenced within this timeframe it will be essential to update the survey effort to establish if bats have colonised the building in the interim. Updated Preliminary Bat Roost Assessments can be undertaken at any time of year. Updated surveys requiring nocturnal or dawn assessment will need to adhere to the Bat Surveys for Professional Ecologists: Good Practice Guidelines (Collins, 2016) with the surveys undertaken between April and September inclusive. In the unlikely event that a bat is found during site works all works in that area must immediately cease and a suitably qualified ecologist should be contacted.

R2 Lighting
In line with paragraph 125 of the National Planning Policy Framework, the development should aim to limit the impact of light pollution on bats through the careful use of lighting in critical areas only and at a low level with minimum spillage. Any lighting, either temporary or permanent, along the site boundaries should be kept to a minimum and directed away from suitable foraging and commuting features to ensure there is no increase in light levels.

R3 Habitat Enhancement
In line with the National Planning Policy Framework, the development should aim to enhance the site for bats. Bat boxes should be installed to provide roosting habitat for species such as pipistrelle. In general, bats seek warm places and for this reason boxes should be located where they will receive full/partial sun, although installing boxes in a variety of orientations will provide a range of climatic conditions. Position boxes at least 3 m above ground to prevent disturbance from people and/or predators. The planting of species which attract night flying insects is encouraged as this will be of value to foraging bats, for example: evening primrose *Oenothera biennis*, goldenrod *Solidago virgaurea*, honeysuckle *Lonicera periclymenum* and fleabane *Pulicaria dysenterica*.
6. DRAWINGS

Drawing C122917-01 – First Nocturnal Emergence Survey

Drawing C122917-02 – Second Nocturnal Emergence Survey

Drawing C122917-03 – Dawn Re-entry Survey

Drawing 41583L-70_03 Rev 4 – Site Layout Option 3
Legend

- Surveyor location
- Common pipistrelle activity
- Building surveyed - Section 1
- Building surveyed - Section 2
- Building surveyed - Section 3
- Building not surveyed
- Site boundary

Northamptonshire County Council

First Nocturnal Emergence Bat Survey
28th June 2016

Surveyor location
Common pipistrelle activity
Building surveyed - Section 1
Building surveyed - Section 2
Building surveyed - Section 3
Building not surveyed
Site boundary

This map is reproduced from the Ordnance Survey material with the permission of Ordnance Survey on behalf of The Controller of Her Majesty’s Stationary Office. © Crown copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution of civil proceedings.

Licence Number: 100040519
This map is reproduced from the Ordnance Survey material with the permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationary Office. © Crown copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution of civil proceedings. Licence Number: 100040519.
Legend

- Surveyor location
- Common pipistrelle activity
- Building surveyed - Section 1
- Building surveyed - Section 2
- Building surveyed - Section 3
- Building not surveyed
- Site boundary

Wollaston Primary School
Dawn Re-entry Bat Survey
26th July 2016

Northamptonshire County Council

Drawing Number: C122917-03
Scale: 1:750
Date: August 2016

Approved By: SB
Drawn By: GP

Triumph House, Birmingham Road, Allesley, Coventry CV5 9AZ
T: 01676 525880 F: 01676 521400
E: admin@middlemarch-environmental.com

This map is reproduced from the Ordnance Survey material with the permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationary Office. © Crown copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution of civil proceedings. Licence Number: 100040519.
REFERENCES AND BIBLIOGRAPHY

APPENDIX 1

LEGISLATION

Bats and the places they use for shelter or protection (i.e. roosts) receive European protection under the Conservation of Habitats and Species Regulations 2010, as amended (Habitats Regulations 2010, as amended). They receive further legal protection under the Wildlife and Countryside Act (WCA) 1981, as amended. This protection means that bats, and the places they use for shelter or protection, are capable of being a material consideration in the planning process.

Regulation 41 of the Habitats Regulations 2010 (as amended), states that a person commits an offence if they:
- deliberately capture, injure or kill a bat;
- deliberately disturb bats; or
- damage or destroy a bat roost (breeding site or resting place).

Disturbance of animals includes in particular any disturbance which is likely to impair their ability to survive, to breed or reproduce, or to rear or nurture their young, or in the case of animals of a hibernating or migratory species, to hibernate or migrate; or to affect significantly the local distribution or abundance of the species to which they belong.

It is an offence under the Habitats Regulations 2010 (as amended) for any person to have in his possession or control, to transport, to sell or exchange or to offer for sale, any live or dead bats, part of a bat or anything derived from bats, which has been unlawfully taken from the wild.

Whilst broadly similar to the above legislation, the WCA 1981 (as amended) differs in the following ways:
- Section 9(1) of the WCA makes it an offence to intentionally kill, injure or take any protected species.
- Section 9(4)(a) of the WCA makes it an offence to intentionally or recklessly* damage or destroy, or obstruct access to, any structure or place which a protected species uses for shelter or protection.
- Section 9(4)(b) of the WCA makes it an offence to intentionally or recklessly* disturb any protected species while it is occupying a structure or place which it uses for shelter or protection.
*Reckless offences were added by the Countryside and Rights of Way (CRoW) Act 2000.

As bats re-use the same roosts (breeding site or resting place) after periods of vacancy, legal opinion is that roosts are protected whether or not bats are present.

The following bat species are Species of Principal Importance for Nature Conservation in England: barbastelle bat *Barbastella barbastellus*, Bechstein’s bat *Myotis bechsteinii*, noctule *Nyctalus noctula*, soprano pipistrelle *Pipistrellus pygmaeus*, brown long-eared bat *Plecotus auritus*, greater horseshoe bat *Rhinolophus ferrumequinum* and lesser horseshoe bat *Rhinolophus hipposideros*.

All species which occur within the county are considered to be priority species on the Northamptonshire local BAP.

The reader should refer to the original legislation for the definitive interpretation.
ECOLOGY
At present, 18 species of bats are known to live within the United Kingdom, of which 17 species are confirmed as breeding. All UK bat species are classed as insectivorous, feeding on a variety of invertebrates including midges, mosquitoes, lacewings, moths, beetles and small spiders.

Bats will roost within a variety of different roosting locations, included houses, farm buildings, churches, bridges, walls, trees, culverts, caves and tunnels. At different times of the year the bats roosting requirements alter and they can have different roosting locations for maternity roosts, mating roosts and hibernation roosts. Certain bat species will also change roosts throughout the bat activity season with the bat colony using the site to roost for a few days, abandoning the roost and then returning a few days or weeks later. This change can be for a variety of reasons including climatic conditions and prey availability. Bats are known live for several years and if the climatic conditions are unfavourable at a particular roost, they may abandon it for a number of years, before returning when conditions change. Due to the matriarchal nature of bat colonies, the locations of these roosts can be passed down through the generations.

Bats usually start to come out of hibernation in March and early April (weather dependent), when they start to forage and replenish the body weight lost during the hibernation period. The female bats then start to congregate together in maternity roosts prior to giving birth and a single baby is born in June or July. The female then works hard to feed her young so that they can become independent and of a sufficient weight to survive the winter before the weather gets too cold and invertebrate activity reduces. Males generally live solitary lives, or in small groups with other males, although in some species the males can be found living with the females all year. The mating season begins in the autumn. During the winter bats hibernate in safe locations which provide relatively constant conditions, although they may venture outside to forage on warmer winter nights.
Wollaston Community Primary School

Travel Plan

DCSF: 928 2104

2016

Signatures:
___ Head Teacher

___ Chair of Governors
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>2</td>
</tr>
<tr>
<td>Wollaston Community Primary School</td>
<td>3</td>
</tr>
<tr>
<td>College Street Wollaston Northamptonshire</td>
<td>3</td>
</tr>
<tr>
<td>School’s Location</td>
<td>3</td>
</tr>
<tr>
<td>Travel Information</td>
<td>4</td>
</tr>
<tr>
<td>Travel and Transport Issues</td>
<td>5</td>
</tr>
<tr>
<td>Surveys</td>
<td>6</td>
</tr>
<tr>
<td>Information from Parent Questionnaires</td>
<td>7</td>
</tr>
<tr>
<td>Problems Identified</td>
<td>7</td>
</tr>
<tr>
<td>Suggested Solutions</td>
<td>7</td>
</tr>
<tr>
<td>Travelling to school</td>
<td>9</td>
</tr>
<tr>
<td>Parent/carers data</td>
<td>9</td>
</tr>
<tr>
<td>Problems perceived by parents/carers as identified within the survey</td>
<td>9</td>
</tr>
<tr>
<td>Roads perceived to be unsafe</td>
<td>9</td>
</tr>
<tr>
<td>Action Plan</td>
<td>11</td>
</tr>
<tr>
<td>Target: For all children to access age appropriate education relating to healthier lifestyles through the School Travel Plan by 2014</td>
<td>13</td>
</tr>
<tr>
<td>Consultation</td>
<td>14</td>
</tr>
<tr>
<td>Monitoring and Review</td>
<td>14</td>
</tr>
<tr>
<td>Appendix</td>
<td>15</td>
</tr>
</tbody>
</table>
School’s Location.

School type
We are an all through community primary school. The building is Victorian in nature but modern inside. We have spent a lot of time and effort making the learning areas as vibrant as possible for the children and we have utilized all available spaces available to us to the best of our abilities. We had an extensive building scheme take place in 2014 which has given us 1 extra classroom and a new school hall. We have also had to convert the centre hall in the KS1 building to accommodate another classroom as we are currently oversubscribed.

Pupil roll
Over the past 4 years the school has had a rising roll. We have a PAN of 45 and are currently full in nearly all year groups and over subscribed in KS1, which means that we have to have mixed aged classes throughout the school and these classes are 30 or more. The classrooms particularly in KS1 are small in size. We are currently oversubscribed and struggling to meet the needs of our village. In order to accommodate the children in our village and any future proof us for any proposed new builds due to take place we would need to raise our PAN to 60 and build another 3 classes on the site.

Transition issues
We have very low mobility due to the fact that the vast majority of our families move to the village and remain there. The village has a local secondary school and local industry for employment, which encourages stability. We are a popular school and can take in new pupils through the year particularly in year 5 and 6 as parents feel that their children need to be with us in order for them to go to the secondary school here. This can impact on our results.

Groups
Ethnicity: We have a predominantly white British intake (96%) and the main religion is Christianity. This is an area that we need to continually address through our Religious Education lessons and through our curriculum to ensure our children are aware of the diverse cultures in our country (SMSC).

EAL: We have one Lithuanian and one Indian in the school who could potentially feel isolated. Although they now speak English well now they did struggle when they were younger. We did not receive any external support for them but managed them within the school. Both children are making good progress.

SEN: Our percentage of pupils at school action is above average however our statemented children are lower. Currently the number of school action plus is lower at 9.9%. We have trackers in place but have struggled to get outside agencies involved due to LA budget cuts. We are now in more control over this and have commissioned an Educational Psychologist through our cluster of schools.

Deprivation
We have a below average amount of children claiming free school meals however this is slowly rising from 1 pupil in 2008 to 19 pupils in 2016. However we do have a lot of children with self-esteem concerns and families who are struggling to pay for extra activities as they are earning just above the free school meal line, or have had recent redundancies. This is becoming more and more frequent at the school. We have employed a full time learning mentor to help with this rising issue and funded her through Pupil Premium.
Current Travel Routes to and from the School

Travel routes include;

- **Southern Area** - children and parents in this area use a foot path between Feastfield and Hinwick Road, a very busy road with no pedestrian crossing which runs through the village and feeds an industrial area, cars regularly speed along this road.

- **Eastern Area** - the pedestrian route requires the crossing of South Street, a busy road where cars regularly break the 30mph limit. There is also a bus stop outside the school grounds on this road. There is now one pedestrian crossing here, and we also have an entrance into the school site on this road, as a result of the previous travel plan. The vast majority of our parents and children now use this entrance.

- **Northern Area** – Walking this route requires the crossing of Cobb’s Lane which is a primary link road from A509 to Irchester. The road is provided with one pedestrian crossing west of the junction with the High Street. This also entails crossing College Street which is incredibly busy with speeding cars and no pedestrian crossing.

All the teachers at the school drive and park in the car park adjacent to the school. Some staff choose to park in College street.

Travel Information

College Street is located to the front of the school, South Street to the rear and Queens Road to the side; these are heavily congested at the beginning and end of the school day due to parked cars. There is only one crossing point on South Street and none on any of the other approach routes. The school has no facilities for parking other than for teachers. To the west of the school is the High Street and the village hall which has become a popular site to park. The High Street also leads to a large car park owned by a local company, however parents are not permitted to use this facility to park and stride to school.

At present there are 325 children attending the school. These children arrive at any time between 8.40am and 9am and all leave at 3.30pm. There are “after school clubs” at the school with a number of children leaving between the hours of 4:00pm and 6:00pm. The school is also used by a number of external community groups during the evening.

There are no SEN children at the school requiring transport.

Children regularly walk from the school to Scott Bader swimming pool and Wollaston Secondary School during school hours.
Travel Plan 2016

Coaches are used for school outings and they park on South Street.

Travel and Transport Issues.

Busy periods of the day are morning opening and afternoon closure times.

- The school has two dual entrances/exits to the front of the school in College Street and an access point on South Street at the back of the school.

- There are a total of 43 staff plus other visiting educators, parent helpers and student teachers, many of whom come to the site in cars. The school has a total of 17 marked parking bays inclusive of 1 allocated for disabled drivers and 2 marked visitor parking bays. There is additional parking in the streets surrounding the school.
Surveys

- School parents/carers were surveyed in June 2015 with a return rate of 92 from 223.

- Year 1 upwards - School pupils were surveyed in June 2016 with a return rate of 241 from 251.

- Sample questionnaires can be found in the Appendix.

Information from Parent Questionnaires

Problems Identified

- Volume of traffic
- Inconsiderate parking
- Congestion – College Street, Queens Road, South Street
- Safe crossing places in the village – not enough currently
- Speed that cars drive through the village
- State and condition of paths on College Street.
- Dog mess on the pavements

Suggested Solutions

- One-way system on College Street was the most requested.
- Speed Bumps put in on College Street and South Street
- Improve pathways – dog mess/lighting/trim overhanging bushes
- Police/warden/lollipop patrols
- Stop parking on paths/junctions
- Impose no parking zones
- Raise awareness/educate parents and children
- Reduce speed limit to 20mph on surrounding road.
- Bike lanes through the village to enable children to bike to school safely.
Travel to school Survey – Results.

A Hands up survey took place in each class with the children from year 1 up to year 6 pupils.

Pupils Survey

How I Currently get to school

- Walk – 139
- Car – 100
- Bike – 2

How I would like to get to school

- Walk – 73
- Car – 42
- Bike – 91
- Bus – 14
- Train – 21 (obviously this is not feasible as there are no trains to Wollaston)

Staff Survey

41 staff surveyed

How staff currently get to school:

- Car – 20
- Walk – 16
- Bike – 0
- Car Share - 5

How they would like to get to school

- Car – 15
- Walk – 23
- Bike – 3
Risks perceived to be unsafe

It can be seen that the primary areas of concern for parents and carers are the roads directly around the school.
Travel Plan 2016

Action Plan

Objectives - We aim:

To reduce the number of children / parents coming to school by car – to encourage walking / biking to school.

To reduce the amount of staff coming to school by car by car sharing, promote the bike to work scheme, encouraging those that can to walk to school. In doing so this will reduce the parking in College street, reducing congestion and also promoting healthy modes of transport and provide travel choice.

To have the car park extended onto the school playground for all after school productions ensuring that there is no parking related to the school for evening functions / productions.

To use the local Business car park as an extension to our car park through the school day for our staff.

Target 1

- To further reduce staff coming to school by car by 8% by October 2016.

- To all biking to school for older children – bikeability training in place and secure bike storage in place. Yr 5 and 6 children MUST have Bikeability grade 2, or come to school accompanied by their parents.

Target 2

- For all children to continue to access age appropriate education relating to healthier lifestyles through the school travel plan 2016.
Objective: To reduce congestion around the school at the beginning and end of the school day.

Target 1:

<table>
<thead>
<tr>
<th>Objective</th>
<th>SMT</th>
<th>March 2016</th>
<th>More children walking to school, less congestion.</th>
<th>Newsletters/advertising/assembly</th>
<th>None needed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>To promote walking to school to pupils and parents/carers</td>
<td>SMT</td>
<td>March 2016</td>
<td>More children walking to school, less congestion.</td>
<td>Newsletters/advertising/assembly</td>
<td>None needed.</td>
</tr>
<tr>
<td>To allow our year 5 and 6 children to cycle to school using the secure bike storage after they have received appropriate training.</td>
<td>SMT and Gov Chair</td>
<td>March 2016</td>
<td>Agreement from parents</td>
<td>Secure storage for bikes on the site. Track number of children using bikes to come to school.</td>
<td>Bike storage, Bike ability training, Insurance cover</td>
</tr>
<tr>
<td>To continue to participate in national walk to school week activities.</td>
<td>Staff/govs.</td>
<td>May 2016</td>
<td>Walk to school activities happening.</td>
<td>Actual</td>
<td>Advert/newsletter/website, Display reminder notices to keep parents informed.</td>
</tr>
<tr>
<td>To encourage staff to car share/walk to school.</td>
<td>All staff</td>
<td>March 2016</td>
<td>10% of staff no longer driving to school.</td>
<td>Reduced congestion on college street. More parking available in the staff car park.</td>
<td>None needed.</td>
</tr>
<tr>
<td>To investigate the bike to work county scheme for staff and to encourage staff to take up this offer.</td>
<td>All Staff</td>
<td>March 2016</td>
<td>10% of staff taken up the scheme and biking to school.</td>
<td>Actual</td>
<td>Advertising and discussing in staff meetings.</td>
</tr>
<tr>
<td>Investigate Safer Routes to school with view to 20mph limit on key roads such as College Street.</td>
<td>SH and Travel Plan Officer</td>
<td>June 2016</td>
<td>Safer Routes to School in place.</td>
<td>Actual</td>
<td>Parish Council Schools team</td>
</tr>
<tr>
<td>Deliveries to enter school at off peak times. Request made when ordering</td>
<td>School Business manager</td>
<td>Sept to July 2106</td>
<td>Deliveries into school take place outside peak times.</td>
<td>Actual</td>
<td>n/a</td>
</tr>
<tr>
<td>Utilize parking for staff cars in local businesses car park (Doc Martins)</td>
<td>Head Teacher</td>
<td>June 2016</td>
<td>Staff not parking on roads near the school – ease congestion.</td>
<td>Staff parking survey</td>
<td>N/A</td>
</tr>
</tbody>
</table>

A. To increase the number of children walking to school from 40% to 45% by end of 2016.
B. To encourage children cycling to school from 0% to 5% by end of 2016.
C. To increase numbers of staff who car share from 4 to 6 by end of 2016.
D. To reduce the number of car journeys to/from the school by 10% by the summer of 2016
Objective: To promote healthy modes of transport and provide travel choice.

Target 2: To ensure that the whole school community is made aware of alternative modes of travel by July 2016.

<table>
<thead>
<tr>
<th>Action No.</th>
<th>Description</th>
<th>Resp person</th>
<th>Time scale</th>
<th>Success criteria</th>
<th>Monitoring and Evaluation</th>
<th>Resource Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>To ensure that all proposals are shared with the children through the curriculum as seen in teachers planning in PSHE areas.</td>
<td>All staff</td>
<td>Through the academic Year 2015 to 2016</td>
<td>Children educated to recognise importance of travelling to school and the travel plan within curriculum.</td>
<td>Staff feedback. Questionnaires from children highlighting awareness.</td>
<td>N/A</td>
</tr>
<tr>
<td>2.</td>
<td>To achieve the Enhanced Healthy Schools awards.</td>
<td>All staff</td>
<td>By June 2016</td>
<td>Improved awareness of health issues linked to exercise and wellbeing. Enhanced Healthy schools award.</td>
<td>Project work completed by children and through the learning mentor.</td>
<td>N/A</td>
</tr>
<tr>
<td>3.</td>
<td>To promote the awareness of environmental issues and health to enable us to achieve our Gold Mental Health Award. Take part in walk to school week once a year.</td>
<td>School council / parents / Staff</td>
<td>Sept to July 2016</td>
<td>Children to have good mental health and self esteem.</td>
<td>Feedback from learning mentor regarding individuals. Gold Mental Health award received</td>
<td>N/A</td>
</tr>
<tr>
<td>4.</td>
<td>To continue to promote “Safe Kids Walking” website and “Street Doctor” and “mytravelshare.org” to all stakeholders through school website</td>
<td>SMT</td>
<td>Sept to July 2016</td>
<td>In use</td>
<td>School Council</td>
<td>Newsletters</td>
</tr>
</tbody>
</table>

Code:
- Completed and working well
- Mid completion – still work to do here
- Not started yet.
Consultation.

The following have taken place:

- Parents questionnaires carried out in June 2015
- Parents and residents consultation September 2016
- Ongoing consultation of parents and local police who are regularly on site to monitor situations.
- New Travel Plan constructed during May / June and September 2016.
- Travel Plan draft consultation with staff – July 2016.
- Survey results have been passed to the parish council – November 2016

Monitoring and Review

- The next survey will be completed in June 2017, and annually thereafter. Responsibility: Head and Chair of Gov.
- The School Travel Plan will be reviewed in March each year Responsibility: Head and Chair of Gov.
- The Head and Chair of Gov will consider pupil travel needs arising from new developments in Education and Transport provision and the School Travel Plan will be revised as necessary.
- The Travel plan and actions will be monitored through the Governor meetings in line with the school improvement plan.
- Discussions will take place with the head and the local parish council regarding improvements.

Signed ___________________________ Head Teacher

Signed ___________________________ Chair of Governors
Appendix

To be included:

- Parents questionnaire
- Pupils questionnaire
School Travel Plan questionnaire (parent)

Dear Parent

Due to a proposed new build due to start here in the summer, I have been asked to further develop our schools travel plan to try and improve the journey’s to and from our school. It is hoped that the Travel Plan will address as many concerns as possible, including pedestrian safety and the problems of car parking and congestion.

The overall aim is to promote safe and healthy journeys to school, which in turn, can also help to reduce the use of the car and impact of the 'school run'.

Please help us by completing the accompanying School Travel Questionnaire and return it to the school office.

Thank you.

Sally Hamson - Head Teacher
Parent Survey

1. If you could choose, how would you prefer your child to be able to travel to school?
 - On foot
 - By car
 - By bicycle
 - Car Share
 - Bus
 - Park & Walk
 - Other
 -

2. Do you experience any of the following problems? *(Please tick as many boxes as necessary)*
 - Speed of traffic – too fast
 - Parking at the school
 - Speed of traffic too slow (i.e. congestion)
 - Parking near the school
 - Too much traffic
 - Other (please give details)
 - ..
 - ..

3. If suitable parking was available, would you be prepared to ‘park and walk’, i.e. park a bit away from the school and walk the rest of the way?
 - Yes, great idea
 - No, I would rather park by the school
 - Maybe sometimes
 - Not practical

4. Would you consider using a car sharing scheme?
 - Yes
 - No

6. Please give details below of any particular places which you think are unsafe:
 - LOCATION (Street name if possible)
 - PROBLEM (e.g. no safe place to cross)
 - A. ..
 - ..
7. Can you suggest any particular improvements to make walking or cycling safer or more attractive?

……………………………………………………………….

……………………………………………………………….

……………………………………………………………….

THANK YOU FOR TAKING THE TIME TO ANSWER THIS SURVEY

Please return your questionnaire to the school.
Quick Questionnaire
on pupils’ travel patterns

TO BE COMPLETED FOR THE WHOLE CLASS BY A SHOW OF HANDS

Name of School: __

Date: _______________________________ Class/Form Year: _______________________

1. How many pupils are there in the class today? __________

2. In the morning, how many pupils travelled to school (for the main part of their
journey)?

 on foot by bicycle
 by bus by train
 by car (given a lift)

3. If pupils were able to choose how they travelled to and from school, how many
would like to travel:

 on foot by bicycle
 by bus by train
 given a lift

NB: the total number of responses to both question 2 and to question 3 should
equal the number present in class.