PLANNING APPLICATION:

PLANNING, DESIGN AND ACCESS STATEMENT

PROPOSED IN-VESSEL COMPOSTING PLANT AND ASSOCIATED DEVELOPMENTS

KIRBY LODGE

CORBY

NORTHAMPTONSHIRE

FOR

B J READING AND SON

MAY 2007
CONTENTS

PLANNING APPLICATION FORMS

DRAWINGS
GPP/BRS/KL/07/01 Site Location
GPP/BRS/KL/07/02 Site Plan
GPP/BRS/KL/07/03 Landscaping proposals
GPP/BRS/KL/07/04 Aerial Photograph of existing site
GPP/BRS/KL/07/05 Proposed access improvements
14160-03-P2 Existing Site Plan
14160-04-P2 Proposed Site Plan
14160-01-P4 Proposed Site Layout
14160-02-P3 Proposed Elevations
14160-05-P1 Proposed Sections

1. THE PROPOSED DEVELOPMENT
 1.1. Background
 1.2. The development
 1.3. Description of the site and its surroundings
 1.4. Existing operations

2. PLANNING POLICY CONTEXT
 2.1. Compliance with national and development plan policies
 2.2. Design criteria compliance

3. PLANNING CONSIDERATIONS
 3.1 Landscape and visual impacts
 3.2 Air emissions
 3.3 Noise
 3.4 Ecology
 3.5 Archaeology
 3.6 Soils
 3.7 Surface and groundwater
 3.8 Flood Risk Assessment
 3.9 Traffic and highway impacts
 3.10 Lighting
 3.11 Contaminated Land

4. DESIGN AND ACCESS STATEMENT
 4.1 Use
 4.2 Amount
 4.3 Layout
 4.4 Scale
 4.5 Landscaping
 4.6 Appearance
 4.7 Access

5. CONCLUSIONS
APPENDICES

Appendix 1 Priors Hall Framework Plan
Appendix 2 Planning policies and Design criteria
Appendix 3 Covered Systems
Appendix 4 Wittering Wind Rose
Appendix 5 Transport Assessment
Appendix 6 Photographs
Appendix 7 Flood Risk Assessment
1 THE PROPOSED DEVELOPMENT

1.1. Background

Kirby Lodge is a complex of farm buildings, one of a number within the Winchelsea Estate farm holding. The location of the site is shown on plan GPP/BRS/KL/07/01. The complex comprises two traditional stone barns together with two modern buildings. They are used for housing stock and feedstuffs, but since the sale of the dairy herd, the stock held here are to be transferred to the old dairy unit at Manor Farm, thus the buildings will soon become surplus to requirement. The surrounding land within the farm holding has been worked for ironstone and is therefore not productive farmland. The use of the compost product to spread on the fields will provide the opportunity for significant soil improvement, together with natural fertilisers and weed suppressants.

During discussions with the Planning Officer, prior to the submission of the planning application, the design of the site layout was changed, to minimise the impact of the development footprint on the agricultural area.

1.2. The Development

The site that is proposed for in-vessel composting is shown on plan GPP/BRS/KL/07/02. The proposal for which planning permission is being sought comprises the construction of an in-vessel composting plant to treat 40000 tonnes of input per year of which 30000 tonnes will be waste required to be processed through an in vessel composting plant and 10000 tonnes per annum of woody garden or wood waste required for blending with the IVC input for homogenous composting and to produce wood chip for burning in the on-site steam generating boiler. The technology will be provided by Covered Systems, which is a well established composting operator based in East Anglia. Their methodology for running the operations will enable the site to receive green, catering and Category 3 animal by-product waste; it is set out in detail in Appendix 3. The operations will be carried out in accordance with the recently published Composting Protocol, which establishes best practice procedures and industry standards, thus ensuring a consistent, quality product.

The infrastructure changes involved in the above proposals are as follows and as shown on Drawings 14160-04-P2 Proposed Site Plan, 14160-01-P4 Proposed Site Layout, 14160-02-P3 Proposed Elevations and 14160-05-P1 Proposed Sections:

1. Construction of reception building in which waste will be received and shredded, replacing one of the existing modern farm buildings;
2. Vessels for in-vessel process, including a steam generating boiler and biofilter; replacing the second modern farm building;
3. Creation of a maturation pad and lagoon;
4. Creation of maturation bays on pad, with a biofilter;
5. Weighbridge and portable office building;
6. Conversion of one stone building to office or meeting room for visitors;
7. Improvement of access to Gretton Brook Road/Gretton Road
1.3 **Description of the site and its surroundings**

Site location

The site is located just off Kirby Lane on the north east edge of Corby, 250m east of the Rockingham Speedway, 2.25km south east of Gretton Village and 2.75km west of Deene Village. Site Location Plan GPP/BRS/KL/07/01 shows the site in its setting.

Sensitive receptors

The site is located over 2.25km away from the nearest present residential receptors, the village of Gretton. The closest property, Kirby Hall Farm, is under the control of the applicants, and 1.45km away. Kirby Hall, an English Heritage property open through part of the year to the public as a visitor attraction, is located 850m to the north east.

In addition to the present receptor list, the future development at Prior’s Hall will become a neighbour of Kirby Lodge. This lies to the south of the proposed site and Kirby Lane at a distance of over 100m. The plan showing the draft site layout is enclosed in Appendix 1. Other than a hotel site in the northwest corner of the site, the other uses close to the northern boundary are employment uses and open space. Between the proposed new development and Kirby Lane a belt 30m wide of trees and shrubs has already been planted.

Access and highway network

The proposed site access is onto Gretton Road, detailed on drawing number GPP/BRS/KL/07/02. Gretton Road joins the main Corby highway network at the A6116 to the south and via Gretton Brook Road to the west of the site. Both junctions with the A6116 are of an excellent standard for handling the vehicles which would deliver material to the site for processing. Gretton Road and Gretton Brook Road are lightly used rural roads, of sufficient width to accommodate use by Refuse Collection Vehicles and HGVs.

Landform

The site lies in generally undulating countryside and in particular on a north facing slope. The application site is set down a shallow slope from Kirby Lane and just south of an abandoned ironworking face; the existing contours of the site are shown on Drawing 14160-03-P2. The countryside is typified by large fields with boundary hedgerows, with scattered trees and copses.

Land use

The proposed development seeks to carry out diversification of farming activities on the large local holdings managed by B J Reading and Son. The existing and proposed buildings and structures lie at the centre of a block of agricultural land that comprises the farm holding. The wider area is also predominantly agricultural, though the site is close to the Rockingham Raceway and at a greater distance the industrial landscape of eastern Corby.
Surface and groundwater

The site does not lie within a floodplain although it is adjacent to a stream with a narrow floodplain and it is not affected by a Groundwater Protection Zone.

The nearest water body to the site is the stream 20m due north of the site, being the Gretton Brook, which is classed as Main River. The watercourse runs below the level of the site, which is located on land sloping south-north. The stream is of sufficiently small size and below the lowest point of the application site by 1m that there is little possibility of the site suffering flooding from this source. The applicants have not experienced any flooding during the time of their tenancy of the land, during the last 50 years.

The site itself will be engineered to contain all runoff from the yard and the maturation pad and bays in a purpose built lagoon. The buildings will be provided with drainage to soakaways, in a similar manner to the existing buildings.

Sites of ecological interest

There are no Special Areas of Conservation (SACs) identified within 5 km of the site. There is one Site of Special Scientific Interest (SSSIs) 2900m south east of the site; it is known as Weldon Park.

Cultural and geological heritage

To the East of Kirby Lodge at a range of approximately 850m stands Kirby Hall, a ruined Elizabethan manor open to the public, owned by English Heritage. A restored garden stands in the grounds. Due to the range and landform the site will be unaffected by the development.

2 PLANNING POLICY CONTEXT

The main planning policies relevant to the consideration of waste related development are set out in Appendix 2, together with the criteria of the recently adopted Supplementary Planning Guidance on Design of Waste Developments.

2.1 Compliance with national and development plan policies

The development represents a valid farm diversification operation, being a process conducted within the area of existing farm infrastructure and in response to the recent loss of the dairy herd. The proposals require the demolition of the existing modern-style buildings and their replacement with a new, larger building for waste reception and with composting tunnels. The new building will be typical of modern agricultural buildings and could be re-used in the future, for example as a grain store. The tunnel structures could not be re-used for other purposes, but when they have reached the end of their useful life, they could be replaced with a modern building of similar dimensions for other agriculturally related use.
The two traditional buildings on the site, constructed of stone, will be retained and converted for use in connection with the proposed composting operations. The larger building will be used for meeting rooms and the smaller one as a shelter for stores and equipment. No significant changes will be needed for either building. The connection with the agricultural use of the surrounding farmland of this proposal relates to the use of the compost product, which will have significant benefits to the soils on the areas of restored mineral working. The nature of the proposals are such that they are not suited for carrying out in any built up area; they must be located in the countryside and therefore having an existing farm yard as a base for the scheme is the best option available.

In section 3 the potential environmental impacts are identified and mitigation measures proposed as appropriate to ensure that the proposals will not have an adverse impact on the environment.

The need for the development stems from the County Council’s identified need for in-vessel composting facilities for the diversion of municipal biodegradable waste away from landfill, thus ensuring that the Council will not be affected by LATS penalties. Also, the supplier of the technology, Covered Systems, has carried out research amongst local companies and is confident that there is a large local market for the treatment of catering and Category 3 waste.

The site, together with the site at Stanion that Covered Systems is also involved with, is designed to target the municipal and or commercial waste market in Corby and environs, and thus complies with the proximity principle. The Regional Waste Strategy has identified as of particular concern for the food and drink industry, the need for alternative capacity for the management of biodegradable wastes controlled under the Animal By-Product Regulations 2003.

The principles of a landscaping scheme are included in the submission, but in the event that permission is granted, full details could be submitted in compliance with a landscaping condition.

2.2 Design criteria compliance

High quality design:

The traditional stone buildings on the site are to be retained, for use in connection with the proposed development. As far as possible, the detailed design of the complex of new structures will use features that are typical of modern agricultural buildings and structures, so that the complex fits in with its agricultural surroundings. The waste reception building will have the appearance of a grain store. It and the composting tunnels will have dark grey roofs, to minimize their visual impact.

The maturation bays and biofilters will be constructed using concrete sections, which are now found regularly in farmyard complexes. They will soon discolour to blend in with the surrounds as the compost encourages the growth of lichens.
Holistic design:

The complex of new structures has been designed for maximum efficiency, both in terms of the function of the structures and their use by staff. Until planning permission has been granted for the principle of the development in this location, detailed work on all of the components will not be carried out. In the event that planning permission is granted, a detailed scheme showing all of the components will be submitted for approval.

Local distinctiveness:

The surrounding area is predominantly arable, with fields bordered by hedgerows. Along the boundary of the area of old ironstone working, due north of the application site, there is a block of linear woodland; which is shown on the aerial photograph of the site. The arable area is dotted with isolated farm building complexes, of which the existing farmyard is one. This proposal utilises the existing farmyard and its traditional buildings and proposes the replacement of two more modern buildings with the purpose-designed structures needed for in-vessel composting. The proposed landscaping will link visually with the woodland to the north, thus extending this distinctive landscape feature.

Environmental protection and enhancement:

This is covered in detail in Section 3.

Sustainable development:

The proposal to carry out in-vessel composting will provide a facility that will facilitate diversion of biodegradable material from landfill and the creation of a product that will provide significant agricultural benefits, which are fundamental components of sustainable development.

The scheme will collect water that can then be used, as necessary in the composting process, thus minimising the use of mains water. In addition, a steam boiler will utilise wood waste brought to the site in generating steam that may be needed in the event that the compost does not reach 70°C by natural processes; this will minimise the need for the consumption of electricity.

The choice of a site close to Corby, but outside the built-up area (see below) minimises the distance travelled by the waste. Compost product is to be used on the farmland around the site, thus eliminating the need for road transport.

Strategic site layout:

The footprint of the site has been kept to a minimum, by the following means: cutting away part of the higher ground to the south of the site and using some of the material to build up the levels in the north of the site, so that a flat site can be achieved with minimum encroachment of the land to the east; using a system of forced air maturation in bays, thus eliminating the need for space between maturation windrows.
for turning and minimising the outside yard space to that which is essential for the safe use of lorries and equipment.

High quality landscaping and boundary treatments:

The landscaping proposals are set out in sections 3 and 4.

Effective buffers:

The choice of site for this proposal was dictated by its distance from sensitive receptors, see section 3. Part of the land around the site is to be bunded and landscaped, which will enhance the effectiveness of the distance from receptors, in the control of dust, noise, odour and bioaerosols.

Lighting:

See section 3. It is suggested that a detailed scheme be submitted for approval in the event that planning permission is granted.

Site access:

An improved assess will be constructed on to Gretton Road; see plan GPP/BRS/KL/07/05. The public footpath that runs north from this point will be protected to avoid conflict with users. No general public access will be permitted to the site, in accordance with the requirements of the Licences to be issued by the Environment Agency and State Veterinary Service. However, the public will be encouraged to visit the site for guided tours, as set out in section 4.

Sustainable transport:

All compost product will be used on the farm fields, therefore minimising the amount of traffic movements generated by this proposal. The nature of the waste inputs is such that there is no opportunity to use transport other than lorries.

Integrated development:

It is not appropriate to seek to locate in-vessel composting operations on sites in urban areas, due to the need to provide buffer zones from sensitive receptors and large areas of land on which to spread the compost product. Nor is it possible to use landfill sites near Corby, as neither site has space to locate a facility of the size proposed. In this case the integration sought is with the agricultural land upon which the compost will be used.

Public safety:

See above and section 4.
3. ASSESSMENT OF ENVIRONMENTAL EFFECTS BY TOPIC

3.1 Landscape and visual impacts

The site is only overlooked directly by farmland and a footpath passing near to the point of access to the application site. The site surroundings have moderate scenic quality, but the site is of little inherent quality, and does not stand out in terms of size or prominence in the surrounding landscape, being a farm building complex in an area with other such buildings. Potential visual impact would be localised and primarily affect views from the Public Footpath and short stretches of the local roads. Even then, the nature of the replacement building and additional structures and the fact that their size in relation to the wider landscape is modest will be such that they do not detract noticeably from the views.

The new building, structures and yard will be constructed partly on the existing farmyard and on an area to be excavated from the slope to the south and east of the farmyard. This will involve moving soils and some underlying material, which will be placed into bunds around the outside of the composting area.

The bunds to be constructed will be planted with areas of tree and shrubs, which will enhance the setting of the site and reduce views into the site. The areas proposed for planting are shown on Drawing No GPP/BRS/KL/07/03.

3.2 Air emissions

The proposed operation is to be constructed in a manner calculated to reduce the possibility of odour, dust and bioaerosols to a minimum. The reception and sorting of waste and the active phases of composting of the waste materials are all conducted in an enclosed building and structures. The tunnels will be fitted with an air extraction system to enable the atmosphere inside to be controlled. ‘Used’ air is passed from the structures to a biofilter, which will eliminate bioaerosols, dust or odour. The stage of composting conducted on the maturation pad in the containing bays after the active phase will involve no turning of materials and employs pressurised air sucked through the static piles to aerate the materials. The air from the maturation bays will also be exhausted via a biofilter. Thus at all stages of the process the waste is either contained or held in a benign state.

For further details see Appendix 3 Method Statement, which includes a description of how a biofilter works.

The wind rose for Wittering is enclosed in Appendix 4. It is clear that the proposed hotel is upwind of the prevailing wind direction, as is the proposed closest employment site. Also, these uses will be protected by the bunding and planting around the proposed development and the planting along the northern boundary of the Priors Hall site, thus they will not be adversely affected by dust, odour or bioaerosols.
3.3 Noise

The development proposed would create little additional noise beyond that associated with the existing farmyard. Materials will be brought onto the site by waste vehicles and will be emptied directly into the building and then once on the site will be manipulated by bucket loader. Material will leave the site on agricultural vehicles to be spread on the surrounding land. The only machinery on site will be a shredder, operating in the enclosed reception building, and a screen, which sizes the materials at the end of the composting process and will be sited at the lowest end of the site, which is furthest from the proposed development at Priors Hall and screened by the intervening structures and bund. The movement of material from the building into the tunnels; from the tunnels into the maturation bays; from the bays to the screener and from the product stockpiles onto farm vehicles for transport off-site will all take place in the lee of the reception building when considered from Priors Hall, which will provide a substantial screen to the proposed development.

The distance from the noise sources to the nearest sensitive receptors that will be built at Priors Hall is over 100m; the area is upwind of the prevailing wind direction, the proposed bund along the southern boundary will act as a noise barrier and it lies over the ridge that separates the two sites.

There are intermittent and daytime-only origins of most noise sources. There is enclosure within the building of the shredding operations. There is integral noise attenuation within the air management equipment for when it is running.

Defined hours of operation will mitigate noise reception at the nearest properties; it is proposed to operate the site for waste reception and processing between 07.30 and 18.00 Monday to Friday and 08.00 and 13.00 on Saturdays, with only the occasional reception of Civic Amenity site green waste on a Sunday or Bank Holiday, when the green waste skip at the local CA site is full and has to be moved.

3.4 Ecology

The site comprises an existing farm yard and adjacent agricultural land, which have no features of ecological interest.

3.5 Archaeology

The site is situated in a rural area where there is no evidence of recorded archaeology of any significance; therefore no detailed investigations have been carried out at this stage.

3.6 Soils

The quality of the soil on the land to be affected by this proposal is only Grade 3b, therefore the removal of 0.25ha of land from active agricultural production will be insignificant.
3.7 Surface and groundwater

The site is not located on a Groundwater Protection Zone. It will be a requirement of the Waste Management Licence for the proposed operations that the site is provided with a drainage system that can contain all liquids that have contact with the waste. Floor slabs will be bunded to prevent the escape of water and a large lagoon will be provided to collect yard run-off water for re-use in the system. The lagoon will be capable of containing the rainfall run-off generated over the worst 48 hour period in 5 years. The M5 48hr rule for this location is 58.5mm, which gives a volume of 472m^3 of water over 0.8ha of yard. The surface area of the lagoon is shown as 400m2, thus at a depth of 3m, will provide plenty of capacity for run-off water and storage of water for use in the process. These measures will ensure that there is no risk of contamination of either surface or groundwater.

The buildings are provided with soakaway drainage for clean roof-water run-off, as is the case for the existing buildings. Offices will be provided with a septic tank for foul water.

3.8 Flood Risk Assessment

A Flood Risk Assessment statement, in accordance with the requirements of PPS25 is included in Appendix 7.

3.9 Highway and traffic impacts

DTTP has carried out an appraisal of the highway and traffic impacts associated with the proposals. This involved a survey of existing traffic on the Gretton Road and of the traffic associated with the existing use of the site. The full report and survey data are included in Appendix 5, which includes plans showing the swept paths of the various turning movements by a heavy goods vehicle.

The proposed importation of 40,000 tonnes of waste each year will generate 20 loads per day on average, at 8 tonnes per load over 250 days per year.

The conclusions are that

• Analysis has revealed that the impact will be very modest and not material in traffic terms. Accordingly the impact upon what is a lightly trafficked part of the network will not require the introduction of mitigation measures;
• The site access enjoys a location where good visibility will ensure its continued safe operation. Its completion to adoptable standards will further enhance its performance.

Vehicles leaving the site will not have mud on their wheels, as all movements will take place on tarmac or concrete surfaces, which have to be kept clean to comply with the Animal By-product Regulations.

3.10 Lighting

To enable the site to operate during the winter, floodlights will need to be installed. These will be downward facing, 500w lights mounted on the reception building,
tunnels and existing farm buildings. They will only be used during the hours of darkness, when the site is operational; they will be controlled by a timer, which will switch them off at 6.00pm, leaving the site in darkness overnight to avoid adverse impacts on the wildlife. This will have the benefit of not drawing attention to the facility and thus assisting with site security.

3.11 Contaminated Land

Much of the site comprises the existing farm yard; it has only been used for housing stock and for storing feedstuffs e.g hay. Storage of fuel, fertilisers and chemicals has always taken place at the main farm buildings in Deene. The farmland proposed to be incorporated into the composting area is land previously used for cultivation. There is no history of any non-agricultural development on this area, which is a conclusion supported both by the knowledge of the tenant farmer whose family has farmed the land for 50 years and by a check of the historic Ordnance Survey maps of the site. It is not necessary therefore carry out any investigations in respect of the potential for land contamination.

4. DESIGN AND ACCESS STATEMENT (as required by national regulations)

4.1 Use of Site

The existing activities at the site are described in Sections 1 and 2 of this Supporting Statement.

4.2 Amount

The proposal is to handle 40,000 tonnes per annum of biodegradable waste. This will involve the replacement of the two existing agricultural buildings with a new building for waste reception and shredding, five composting tunnels and biofilter, a maturation pad with bays and a lagoon. The existing farm buildings have a floor area of 1095m², of which 909m² will be removed. The traditional buildings to be retained have an area of 186m². The reception building will be 1008m², the composting tunnels will comprise 1185m² of structures, the office building will be 32m², the maturation area will occupy 2016m² and the lagoon will be 400m².

4.3 Layout

As far as possible the footprint of the existing buildings and farm yard is being utilised in this proposal. However, to accommodate the infrastructure needed, the area will have to be extended by about 25m in an easterly direction and 50m in a southerly direction. The layout is as compact as possible, to minimise the amount of land used and to make the site operations as efficient as possible. By adopting the single barrier process only one set of tunnels is needed and by using static pile maturation, the space for maturation is minimised as no turning is required.

The site will be cut into the slope by a maximum of 5m at the southern end, which will enable the building to be largely hidden from this view.
4.4 **Scale**

The reception building will generally be of a scale typical of modern agricultural buildings such as a grain store. The ridge of the tunnels will be of a similar height to the building, but the mass will be less due to the five individual roof structures.

4.5 **Landscaping**

A block of planting is proposed on the bunds to be constructed utilising the soils from the site clearance work. In addition, the remaining field corner will also be planted as a small spinney and a 20m belt of planting is proposed alongside the boundary with Gretton Road. All planting will use native species of the types that are common in the locality.

4.6 **Appearance**

The building work has been designed to reflect the agricultural nature of the site. The waste reception building and composting tunnels will, as far as possible, look like agricultural buildings.

4.7 **Access**

It is intended in carrying out the development of the site to enable easy access for vehicles and pedestrians and give visibility across the entire area. The site is well laid out giving plenty of manoeuvring room for vehicles. There is to be no general public access to the site, which can be controlled by the weighbridge near the point of entry to the site. As there will be heavy plant and machinery operating on the site, a large part of the site will be unsuitable for access other than by able-bodied persons. A ramp will be provided, should the need arise, for access to the site offices, housed by the weighbridge. This will only be a single storey structure, so will be easily accessed by staff or visitors with restricted movement.

It is proposed to provide a surfaced, fenced path around the west and southern boundary, to enable visitors to view the site and operations. The path will be graded to facilitate use by disable visitors.
5 CONCLUSIONS

Composting is best carried out in the countryside, away from sensitive receptors, where the product can be used directly on agricultural land. This site is an under-utilised farmyard, far enough away from any sensitive receptors that it will not cause any nuisance. The compost product will provide a much needed input to improve the soils on the large tracts of restored ironstone workings within the farm.

The proposed technology has been developed to enable a wide range of biodegradable wastes to be processed effectively and efficiently, using the minimum area of land. Also the technology includes measures to minimise emissions such as odour, dust and bio-aerosols.

There is an urgent need for new facilities to divert biodegradable waste from landfill and this site, with its lack of adverse environment impacts, largely complies with planning policy.
Appendix 1

Priors Hall Framework Plan
Planning Policies and Design Criteria

National Policy.

The objectives of waste management decisions are set out in document ‘Changes to Waste Management Decision Making Principles in Waste Strategy 2000 – July 2005, which are

- reducing the environmental impact of waste by moving waste management up the waste hierarchy;
- managing waste in ways that protect human health and the environment and in particular:
 - without risk to water, air, soil and plants and animals;
 - without causing a nuisance through noise and odours;
 - without adversely affecting the countryside or places of special interest;
 - disposing of waste at the nearest appropriate installation, by means of the most appropriate methods and technologies.

The precautionary principle has been maintained as a basis for decision making; it states that “where there are threats of serious or irreversible damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation”.

PPS10 sets out the requirements to be met by waste developments. It advises that “Waste planning authorities should adhere to the following principles in determining planning applications:
– controls under the planning and pollution control regimes should complement rather than duplicate each other and conflicting conditions should be avoided;
– in considering planning applications for waste management facilities before development plans can be reviewed to reflect this PPS, have regard to the policies in this PPS as material considerations which may supersede the policies in their development plan. Any refusal of planning permission on grounds of prematurity will not be justified unless it accords with the policy in The Planning System: General Principles.

Planning applications for sites that have not been identified, or are not located in an area identified, in a development plan document as suitable for new or enhanced waste management facilities should be considered favourably when consistent with Paragraph 21 which states that in deciding which sites and areas to identify for waste management facilities, waste planning authorities should:
(i) assess their suitability for development against each of the following criteria:
– the extent to which they support the policies in this PPS;
– the physical and environmental constraints on development, including existing and proposed neighbouring land uses;
– the cumulative effect of previous waste disposal facilities on the well-being of the local community, including any significant adverse impacts on environmental quality, social cohesion and inclusion or economic potential;
– the capacity of existing and potential transport infrastructure to support the sustainable movement of waste, and products arising from resource recovery, seeking when practicable and beneficial to use modes other than road transport.
(ii) give priority to the re-use of previously-developed land, and redundant agricultural and forestry buildings and their curtilages.

PPS10 also sets out the locational criteria that should be taken into account in testing the suitability of sites.

a. protection of water resources
Considerations will include the proximity of vulnerable surface and groundwater. For landfill or land-raising, geological conditions and the behaviour of surface water and groundwater should be assessed both for the site under consideration and the surrounding area. The suitability of locations subject to flooding will also need particular care.

b. land instability
Locations, and/or the environs of locations, that are liable to be affected by land instability will not normally be suitable for waste management facilities.

c. visual intrusion
Considerations will include (i) the setting of the proposed location and the potential for design-led solutions to produce acceptable development; (ii) the need to protect landscapes of national importance (National Parks, Areas of Outstanding Natural Beauty and Heritage Coasts).

d. nature conservation
Considerations will include any adverse effect on a site of international importance for nature conservation (Special Protection Areas, Special Areas of Conservation and RAMSAR Sites) or a site with a nationally recognised designation (Sites of Special Scientific Interest, National Nature Reserves).

e. historic environment and built heritage
Considerations will include any adverse effect on a site of international importance (World Heritage Sites) or a site or building with a nationally recognised designation (Scheduled Monuments, Conservation Areas, Listed Buildings, Registered Historic Battlefields and Registered Parks and Gardens).

f. traffic and access
Considerations will include the suitability of the road network and the extent to which access would require reliance on local roads.

g. air emissions, including dust
Considerations will include the proximity of sensitive receptors and the extent to which adverse emissions can be controlled through the use of appropriate and well-maintained and managed equipment and vehicles.

h. odours
Considerations will include the proximity of sensitive receptors and the extent to which adverse odours can be controlled through the use of appropriate and well-maintained and managed equipment.
i. vermin and birds
Considerations will include the proximity of sensitive receptors. Some waste management facilities, especially landfills which accept putrescible waste, can attract vermin and birds. The numbers, and movements of some species of birds, may be influenced by the distribution of landfill sites. Where birds congregate in large numbers, they may be a major nuisance to people living nearby. They can also provide a hazard to aircraft at locations close to aerodromes or low flying areas. As part of the aerodrome safeguarding procedure (ODPM Circular 1/200316) local planning authorities are required to consult aerodrome operators on proposed developments likely to attract birds. Consultation arrangements apply within safeguarded areas (which should be shown on the proposals map in the local development framework). The primary aim is to guard against new or increased hazards caused by development. The most important types of development in this respect include facilities intended for the handling, compaction, treatment or disposal of household or commercial wastes.

j. noise and vibration
Considerations will include the proximity of sensitive receptors. The operation of large waste management facilities in particular can produce noise both inside and outside buildings. Intermittent and sustained operating noise may be a problem if not kept to acceptable levels and particularly if night-time working is involved.

k. litter
Litter can be a concern at some waste management facilities.

l. potential land use conflict
Likely proposed development in the vicinity of the location under consideration should be taken into account in considering site suitability and the envisaged waste management facility.

The role of farm diversification in supporting the rural economy is promoted by government and the relevant guidance is set out in Planning Policy Statement 7 - Sustainable Development in Rural Areas. One of the Government’s objectives is “To promote sustainable, diverse and adaptable agricultural sectors where farming achieves high environmental standards, minimising impact on natural resources and manages valued landscape and diversity; contributes both directly and indirectly to rural economic diversity; is itself competitive and profitable and provides high quality products that the public wants”.

Regional Policy.

The guidance on waste development is set out in the Regional Waste Strategy (RWS). The latter includes the following targets:

- By 2010 recycle or compost at least 30% of household waste.
- By 2013 to reduce the amount of biodegradable waste land filled to 80% of what it was in 1995.

The RWS includes a table identifying landfill capacity in Northamptonshire in 2001. The county had a void space of 12,335,000m³, which at the then current annual rate
of fill gave a life of 5.4 years. Since this time additional void space has been created by new permissions and the rate of fill has stabilized, however, the implication of this is that there is an urgent need to find alternatives to landfill in the county, for both municipal and commercial waste arisings.

In the RWS, Consultation Draft in February 2005. Priority 2 was stated as “Improving the efficiency of our resource, the reduction and sustainable management of commercial and industrial waste”. This referred particularly to biodegradable waste, as follows:
“Certain industrial sectors in the region have considerable opportunities to improve their performance. In particular the East Midlands has a thriving food and drink industry. Recent research by the Chilled Food Association (CFA) has shown that CFA member food and drink installations in the East Midlands produce in excess of 35% of the waste of all members in the UK. This figure gives a strong indication of the impact this sector has on the region’s C&I waste stream. Of particular concern for the food and drink industry is the need for alternative capacity for the management of biodegradable wastes controlled under the Animal By-Product Regulations 2003.”

Although this statement was not repeated in the adopted version of the RWS, the RWS does include a table which sets out the waste arisings in the region, by weight and percentage. In 2002-3 food/drink/tobacco of the industrial waste sector produced 994,000 tonnes, which represented 27.3% of the total industrial waste arisings. In the same period, hotels and catering produced 238,000 tonnes, which represented over 10% of the commercial sector waste. These two sectors alone therefore produce a huge quantity of compostable material each year, which is of particular relevance to all proposals for the treatment of biodegradable waste in the county of Northamptonshire.

Northamptonshire Waste Policies.

The relevant policies relating to composting are contained in the Adopted Northamptonshire Waste Local Plan. The Council seeks to manage waste in accordance with the waste hierarchy having regard to both the proximity principle and the best practicable environmental option.

Policy 1 establishes the principles of waste development.

“Permission will be granted for waste development which is consistent with:-
• a clearly established need for the development to serve local and regional requirements for the management and disposal of waste;
• reduction in reliance on landfilling;
• the minimisation of, and balance in, the movement of waste across waste planning authority boundaries, except where the development involves specialised provision and is consistent with regional self-sufficiency;
• minimising the transportation of waste from its source;
• the Best Practicable Environmental Option for the waste stream;
• the integration of waste management facilities;
• the minimisation of harm to the environment, human health, natural resources, local amenity and highway safety;”
Policy 18 states that

“Proposals for composting development, either in the open air or within buildings, will be encouraged where they:

(i) represent a community composting scheme;
(ii) form part of a scheme for farm diversification;
(iii) represent composting on a commercial scale;

provided that in each case the site location is consistent with BPEO for the waste stream and with the proximity principle; and that the development would not have an adverse impact on the amenity of neighbouring residential property or workplaces”.

It should be noted that the concept of BPEO is no longer part of national government guidance and therefore should not be a requirement of individual proposals to demonstrate compliance.

East Northamptonshire Adopted Local Plan Policies.

Policy EN1 Open Countryside
Planning permission will not normally be granted for proposals in the open countryside outside areas specifically allocated for development. Exceptions may include:

(i) agricultural, forestry, recreation or tourism developments, where these would not have an adverse impact upon the local environment or the amenities of adjoining land users;

(ii) development which relates to the re-use and adaptation of buildings which satisfy Policy. 4

Policy AG4 - The Re-use and Adaptation of Buildings in the Countryside
Planning permission will be granted for the adaptation or re-use of buildings in the countryside, provided that the form, bulk and general design of the proposed scheme is in keeping with the character of the surrounding area, and the re-use is for employment, leisure or tourism, or residential accommodation for agriculture or forestry workers. In addition:

(i) extensive alteration, re-building, large scale extensions and those not in keeping with the existing building will not be permitted;

(iv) proposals which would result in an adverse impact on the amenities of surrounding land users will not be permitted;

DESIGN OF MINERALS AND WASTE DEVELOPMENT

Northamptonshire Minerals and Waste Development Framework
Development & Implementation Principles: Supplementary Planning Document Adopted March 2007, set out the criteria for the design of minerals and waste developments.

High quality design – High quality design in context with and complementary to, surrounding landscape and townscape, as well as the nature of operations.

Holistic design – Holistic design incorporating all components of the built form into a consistent architectural treatment. Including all buildings (operational, offices,
reception, security), building components (ventilation, extractor grills, service pipes), storage areas, structures, secure boundary treatments (gates and fences), service infrastructure, wash bays, weigh bridges, etc.

Local distinctiveness – Support local distinctiveness and character.

Environmental protection and enhancement – All design aspects (built form, site layout, lighting, access, landscaping, etc) should seek to avoid and where necessary mitigate adverse impacts on the surrounding environment and human health (including air, water, land, noise, odour, amenity, landscape, biodiversity, geodiversity, flood risk, built and historic environment) whilst maximising beneficial outcomes.

Sustainable development – Incorporate sustainable development practices that promote the prudent use of natural resources, waste minimisation and energy efficiency.

Strategic site layout – Seek to reduce impact on both the immediate surrounds and the broader landscape level through strategic site layout.

High quality landscaping and boundary treatments – High quality landscaping and boundary treatments that are in context with and complementary to, surrounding landscape character. Landscaping and boundary treatments should be maintained to a high standard and positively contribute towards amenity, biodiversity and nature conservation where possible.

Effective buffers – Provision of adequate and effective buffers to reduce adverse impacts on sensitive receptors or areas. Buffers are to be in context with, and complementary to surrounding landscape or townscape, and may include aspects of the built form, landscaping and boundary treatments. Buffers should seek to positively contribute towards amenity, biodiversity, nature conservation, habitat enhancement and catchment conservation where possible. Access opportunities within buffer areas should be maximised where safe.

Lighting – Minimise light pollution (includes sky glow, glare, light spill and trespass).

Site access – Site entry and public access areas are to be well maintained and act to reduce the visual impact of the site. Public rights of way should be retained where possible. Access to the major transport network should seek to reduce impacts on sensitive receptors.

Sustainable transport – Incorporate sustainable or alternative transport options where appropriate (e.g. rail and water transport).

Integrated development – Maximise opportunities to locate complementary operations and activities together.

Public safety – The design, layout and landscaping components should seek to ‘plan out crime’ by creating safe and secure environments, increasing the risk of detection of criminal or antisocial activity, and make crime more difficult to commit.
Appendix 3

Covered Systems

Company information

Covered Systems Ltd was formed in April 2004 after successful award of the contract to build an in vessel composting site at Lackford, Suffolk for Suffolk County Council, in conjunction with Viridor Waste Management. The first year’s trading really only involved the building of Lackford along with development of opportunities provided by John Jardine’s involvement with County Mulch Ltd. County Mulch Ltd is a bark and composting business based in Suffolk, currently handling over 90000 tonnes per annum of green and catering wastes from three sites in Suffolk. John passed the daily management of CML onto a new Managing Director in 2004, when the decision was taken to develop Covered Systems Ltd into a supplier of in-vessel technology and products associated with commercial composting. He still remains actively involved with the CML business. The two main areas of CSL’s involvement with the composting market are listed below-

In-vessel Composting

The building of Lackford and John’s operational experiences has lead to the development of an in-vessel system which is simple, robust, low in terms of capital and operating costs. The process technique which is used takes into consideration the EU 12mm standard for the treatment of ABP regulated material. The first site to operate using the CSL equipment and this technique, is Eco Composting in Bournemouth and we have a current order to commence construction of another site for Countrystyle Recycling in Kent. The EU standard is used at the CML Stanton composting site and has been helpful in understanding the operation. CSL currently have orders to build 3 further sites which will be started once planning has been awarded, one of which is for design, build and operate. We also have a further 10 serious enquiries at various stages, for a mixture of design, build and operation of in vessel composting facilities. The in-vessel tunnels are of a complete concrete construction and all the roof components are manufactured by CSL using their own resources.

Compost Aeration

One of the biggest problems facing existing and new composting sites whether they are windrow or in vessel, is odour generation. Forced aeration of maturing compost has many benefits over conventional techniques by reducing operational costs of the site and of course the environmental benefits. CSL have come up with an innovative system of aeration using vertical pipes which will fit any existing or new operation. The system is marketed under the name of Mistral and is ‘patent pending’ and has been very effective in a number of operations throughout the UK and on different materials. CSL have recently won the annual Innovation in Composting award from the UK Composting Association for the Mistral aeration system and this has created considerable interest from the UK and overseas.
Method Statement

In-vessel composting

The site at Kirby Lodge will have a capacity of 40000 tonnes of input per year of which 30000 tonnes will be waste required to be processed through an in vessel composting plant and 10000 tonnes per annum of woody garden or wood waste required for blending with the IVC input for homogenous composting. It has been our experience that blending and mixing of material for treatment through IVC composting is crucial to create aerobic conditions within the composting mass. The design of the IVC plant complies with the EU processing standard for materials classified under the Animal By Products regulations ie shredding to 12mm and treating the total compost mass to 70°C for one hour.

The input will be received at the site via a weighbridge and then discharged either in the reception building for IVC input or into the reception area near to the maturation pad for woody wastes. IVC input will be pre sorted, screened, hand picked, then shredded inside the building. Woody wastes will be pre-screened and then shredded outside to form the ad mix for the IVC compost and will be carried by loading shovel into the IVC reception building as required for mixing. The mixed material will be stored and aerated inside the reception building for around 7 days before being loaded into one of the 5 composting tunnels, which have been sized to allow a 2 week retention time in the tunnels, at the peak time of waste input. The tunnels will be able to hold around 1000 tonnes per week of input, which is adequate capacity based on our experience of operating other IVC facilities and scaling the inputs to match Kirby Lodge. When the material is in the tunnels, it will be continuously monitored and results recorded, for temperature and oxygen levels. In the event that the temperature does not reach the minimum of 70°C, steam will be pumped into the tunnels, generated by the steam boiler. All exhaust air from the tunnels will pass through a biofilter.

Once the compost has been processed through the tunnels it will be carried outside onto the maturation pad and placed in aerated bays, for a period of 5 weeks. Air will be pumped into the compost and sucked from the base of the bay for exhaust to atmosphere via a biofilter. Aerated bays will be filled from the tunnel end and emptied from the opposite end. Our experiences show that aeration of maturing compost reduces composting time and minimises the production of odours from anaerobic conditions created from unaerated maturing compost. For the peak input time we require a storage capacity of 10000 cubic metres per month for the IVC material. The aerated part of the maturation area will hold around 12000 cubic metres of material to allow capacity for the surplus woody compost screenings to be composted.

Once the compost has been matured it will be screened at the far end of the site as it is removed from the aerated bays and once screened will be regularly moved off site mainly onto agricultural land next to or adjacent to the site. Any reject material from the screening will be added back into the composting process once it has been cleaned.
Operation of a biofilter

Biofilters are used to remove odours from gaseous emissions; they exploit the ability of certain micro-organisms to break down organic matter and some inorganic odours. In the biofilters, the micro-organisms are provided with a substrate that has a large adsorbent surface area and the correct physical environment. They reside within the filter matrix and utilise the gasses as they pass by, rendering them into harmless odour free products, (basically carbon dioxide and water).

In some cases pH has to be controlled so calcium carbonate can be added. The micro-organisms require a humid environment to function effectively so the beds are often sprayed with water, though in this instance the gas emanating from the composting facility will be humid.

The air to be treated is blown evenly through the biofilters using a fan, the matrix of the filter is kept open by using materials that retain an open texture, usually compost oversize material or woodchip. Bacteria and fungi are allowed to develop naturally. Once established, the micro-organisms digest the odorous substances converting them mainly to carbon dioxide and water. The airflow passes through the filter and diffuses into the atmosphere.

Biofilters are constructed with a concrete floor and walls and filled with the filter. Onto the floor a matrix of pipes will be laid with holes in the upper surface to allow the gases to diffuse into the materials that will be laid on top of them. The pipes will be laid on a gradient so that any condensate or free water will be collected in a sump and either returned to the top of the filter or returned to the beginning of the composting process.

A water sprinkling system will be positioned over the surface of the biofilters to maintain the optimum conditions within the filter beds at all times when the ambient conditions are atypical.
Appendix 4

WIND ROSE FOR WITTERING
N.G.R: 5042E 3026N ALTITUDE: 73 metres a.m.s.l.

SEASON:
Period of data: Jan 1995 - Dec 2004
Appendix 5

Transport Assessment
Appendix 6

Photographs

Covered Systems In-vessel Composting site at Lackford

General site view, showing waste reception building

Composting tunnels
Appendix 7

Flood Risk Assessment – Compliance with PPS25

1 Development description and location

Development type and location

The development comprises the provision of an in-vessel composting facility, which will enable the site to handle a mixture of green waste and food waste, in accordance with the requirements of the Animal By-products Regulations.

A detailed description of the development and its location is included in the planning application submission, which contains a site location plan, site plan and proposed layout plans; this FRA should be read alongside these documents.

Flood vulnerability classification

In Table D2 of PPS25, waste treatment sites are classed as ‘Less Vulnerable’.

Compliance with the Local Development Documents

Compliance with policy on waste developments is set out in the Supporting Statement that accompanies the planning application, therefore the FRA should be read alongside this document.

Evidence that the Sequential Test or Exception Test has been applied in the selection of this site for this development type

There is no requirement to carry out the ‘Sequential Test’ as the site is in Zone 1, which is the Zone in which the Environment Agency encourages all development to take place. It is recognized that the site abuts Gretton Brook, which is classed as Main River and which is shown on the Environment Agency’s web page as ‘subject to flooding from rivers or sea without defences’ i.e. Zone 3.

There is no requirement to carry out an ‘Exception Test’; reference Table D3 of PPS25 shows that for the combination of the classification of the site use as ‘Less Vulnerable’ and its location in a Zone 1 area such a test is not needed.
2. Definition of the flood hazard

Identification of sources of flooding that could affect the site

Gretton Brook could be a source of flooding that could affect this site. It runs along the northern boundary of the site, in a channel that lies over 1m below the lowest level of the site.

For each identified source, a description of how flooding would occur, with reference to any historic records wherever these are available.

The tenant farmers, who have been in occupation of this farm complex since 1958, have not experienced any flooding during this time.

Description of existing surface water drainage arrangements for the site

The farm yard drains naturally to the Gretton Brook.

Roof water from the existing farm buildings discharges into soakaways.

3. Probability

Flood zone location

The site is situated in Flood Zone 1; the zone identified as at least risk of flooding.

Strategic Flood Risk Assessment.

No Strategic Flood Risk Assessment has been carried out for this site as it is not part of an area that is at risk of flooding.

Probability of the site flooding

There is only a very low probability of the site flooding, as at its lowest level it lies over 1m above the height of the ‘river’ along the northern boundary and the flood plain (as shown on the Environment Agency’s web site) of the ‘river’ appears to abut the site boundary. The site slopes up from the ‘river’ at a gradient of 1 in 20, so most of the development site is 2m or more above the ‘river’ edge.

Existing rates and volumes of run-off generated by the site

A norther half of the application site is greenfield, but the southern half is within the existing farmyard complex. There are no estimates available of the existing run-off from the farmyard and field. In view of the proposals described below, the run-off from the site will be reduced as a result of the development and thus there should be no need to calculate rates and volumes.
4. Climate change

Affect on flood risk at the site by climate change.

Paragraph B10 of PPS 25 states that “Sensitivity testing of the Flood Map produced by the Environment Agency, using the 20 per cent from 2025 to 2115 allowance for peak flows, suggests that changes in the extent of inundation are negligible in well-defined floodplains, but can be dramatic in very flat.”

As the site is not in either a well-defined floodplain or in a flat landscape the affect on the site will be negligible.

Additional run-off due to any increased rainfall, if such an eventuality arises, can be accommodated by increasing the capacity of the surface water storage lagoon that will be constructed to contain the predicted run-off from the development site. There is ample space in the field around the proposed lagoon to significantly increase the capacity, if this proves to be necessary.

5. Detailed development proposals

Details of the development layout.

The details of the proposals are shown on the plans included with the planning application; this FRA should be read alongside these documents.

Where appropriate, demonstrate how land-uses most sensitive to flood damage have been placed in areas within the site that are at least risk of flooding.

None of the site is at risk of any flooding, therefore no consideration has been given in the site layout to this issue. The layout has been designed to minimize the impact on the landscape. However, the built elements of the scheme are situated furthest away from the ‘river’.

6. Flood risk management measures

Protection measures to manage flooding, including the potential impacts of climate change, over the development’s lifetime

These are not necessary, as the site is not at risk of flooding. However, the need to provide a gently sloping site means that land in the south will be cut away and some of the material released will be used to build up the lower lying area in the north by a depth of 3m at the northern boundary; this is shown on the plan 14160-05-P1 Proposed Sections. In addition, a 3m screening bund, utilizing soils and the balance of the excavation material from the site preparation works, will be located between the composting site and the ‘river’. This will provide a 6m increase in height and thus will protect the site in the event that the volume of water in the watercourse backs up from the downstream end, which is the most likely cause of flooding in this locality due to the possibility that a blockage may occur downstream.
7. Off site impacts

Measures to ensure that the proposed development and the measures to protect the site from flooding do not increase flood risk elsewhere.

Although there will be an additional area of hard surfacing created to accommodate the in-vessel composting tunnels and maturing compost, no water will be allowed to run-off from these areas, due to the requirements of the Environment Agency and State Veterinary Service in their licences for the operations. Indeed, overall, there is a need for water to add to the incoming waste to facilitate the process, therefore the scheme will incorporate as much water collection as possible, to reduce the demand from the mains.

The proposal includes a lagoon, which will be capable of containing the rainfall run-off from the yard, generated over the worst 48 hour period in 5 years. The M5 48hr rule for this location is 58.5mm, which gives a volume of 472 m3 of water over 0.8ha of yard. The surface area of the lagoon is shown as 400 m2, thus at a depth of 3m, will provide plenty of capacity for run-off water and storage of water for use in the process. This water will be re-used in the process.

Clean water from all building roofs will drain to soakaways, thus minimizing surface water run-off.

These arrangements will make a positive contribution to the prevention of flooding downstream.

Measure to prevent run-off from the completed development causing an impact elsewhere

See above.

8. Residual risks

Residual flood-related risks after implementation of the measures to protect the site from flooding

There will be no flood-related risks after the implementation of the measures set out above.

Management of residual risks over the lifetime of the development

Not applicable.
QUALITY CONTROL

<table>
<thead>
<tr>
<th>Project Details</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>Kirby Lodge, Corby, Northamptonshire</td>
</tr>
<tr>
<td>Client</td>
<td>B J Reading and Son</td>
</tr>
<tr>
<td>Project</td>
<td>Transport Assessment</td>
</tr>
</tbody>
</table>

Report Statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared By</td>
<td>Hilary Löfmark</td>
<td>Consultant</td>
<td>15/03/07</td>
</tr>
<tr>
<td>Checked By</td>
<td>Del Tester</td>
<td>Director</td>
<td>11/04/07</td>
</tr>
<tr>
<td>Authroised By</td>
<td>Del Tester</td>
<td>Director</td>
<td>11/04/07</td>
</tr>
</tbody>
</table>

Report History

<table>
<thead>
<tr>
<th>Status</th>
<th>Revision</th>
<th>Report History</th>
<th>Date</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft</td>
<td>-</td>
<td>March 07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issue</td>
<td></td>
<td>April 07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© DT Transport Planning Limited

No part of this document may be reproduced by any means whatsoever without the prior permission in writing of DT Transport Planning Limited. DT Transport Planning Limited disclaims any responsibility to the Client or any third party in respect to matters that are outside of the scope of this report. This report has been prepared with reasonable skill, care and diligence within the terms of the contract with the Client and taking account of manpower, resources and testing devoted to it by agreement with the Client. This report is confidential to the Client and DT Transport Planning Limited accepts no responsibility of any nature to third parties to whom this report or any part thereof is made known. Any third party relies on the content of this report at their own risk.
CONTENTS

1.0 Introduction
2.0 Existing Conditions and Site Accessibility
3.0 Policy background
4.0 The Proposed Development
5.0 Trip Generation
6.0 Highway Impact
7.0 Summary and Conclusions

LIST OF FIGURES

Figure 1 Site Location Plan
Figure 2 Sk1 - Proposed Access Arrangements

APPENDICES

A ATC Data
B Drawings Sk2 - Sk5 AutoTRACK Assessments
1.0 INTRODUCTION

1.1 DT Transport Planning Limited has been appointed by B J Reading and Son to prepare a Transport Assessment in support of an application to develop a composting facility at Kirby Lodge, Gretton Road, in Corby.

1.2 Kirby Lodge is currently a large farm, with mostly arable land, but also some beef stock. The arable farming will continue, however some of the beef stock will be replaced by the proposed composting facility. Mixed food and green waste will be brought to the site and will be used as compost, mainly within the farm.

1.3 This Transport Assessment describes the existing transport conditions in the area, the site accessibility the proposed development and associated transport movements, and the transport implications of the proposals.
2.0 EXISTING CONDITIONS AND SITE ACCESSIBILITY

Site Location and Adjacent Highway Network

2.1 Kirby Lodge is located on Gretton Road on the north eastern side of Corby, Northamptonshire, see Figure 1. It is near a large industrial area which generates a considerable number of heavy goods vehicles trips, and is served by the A6116, a wide single carriageway route linking the A6003 to the west with the A43 to the east.

![Site Location Plan](image.png)

Figure 1 Site Location Plan

2.2 Gretton Road joins the Gretton Brook Road 1km west of the site. Gretton Brook Road meets the A6116 2km to the west, at a priority junction. These are derestricted single carriageway roads with very low traffic flows. There are a very small number of industrial sites located along Gretton Brook Road, but the majority of the surrounding land to the north and east of the site is farmland. Rockingham Speedway stadium is located on the south side of Gretton Brook Road, however the access to the stadium is from the A6116, so it does not affect traffic flows on Gretton Road. To the south, Gretton Road joins the A6116 at the outskirts of the industrial estate.
2.3 The existing access to Kirby Lodge is from Gretton Road where the road turns in a 90 degree bend. This is a muddy farm track at present, with access to the farm buildings to the east and also to the land to the north. There is also a public footpath running north through the farm at this location.

Existing Traffic Flows.

2.4 Automatic traffic count data was collected on Gretton Road just south of the existing site access between Monday 19th and Sunday 25th February 2007. Tables 1 and 2 summarise the data collected, Appendix A contains the traffic data.

Table 1 Observed Traffic Flows, Gretton Road, 5-Day Average

<table>
<thead>
<tr>
<th></th>
<th>AM Peak (0800 – 0900)</th>
<th>PM Peak (1700 – 1800)</th>
<th>12 Hour (0700 – 1900)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northbound</td>
<td>21</td>
<td>77</td>
<td>374</td>
</tr>
<tr>
<td>Southbound</td>
<td>85</td>
<td>17</td>
<td>362</td>
</tr>
<tr>
<td>2-Way</td>
<td>106</td>
<td>94</td>
<td>736</td>
</tr>
</tbody>
</table>

Table 2 Observed Traffic Speeds, Gretton Road, February 2007

<table>
<thead>
<tr>
<th></th>
<th>Northbound</th>
<th>Southbound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>85th Percentile</td>
</tr>
<tr>
<td>Monday</td>
<td>42.0</td>
<td>49.9</td>
</tr>
<tr>
<td>Tuesday</td>
<td>40.9</td>
<td>49.1</td>
</tr>
<tr>
<td>Wednesday</td>
<td>42.3</td>
<td>50.2</td>
</tr>
<tr>
<td>Thursday</td>
<td>41.6</td>
<td>49.1</td>
</tr>
<tr>
<td>Friday</td>
<td>41.9</td>
<td>49.5</td>
</tr>
</tbody>
</table>

2.5 Tables 1 and 2 show that traffic flows on the road are currently very low, with traffic speeds of around 40 mph on the approach to the site, even though the speed limit is derestricted at this location.

Site Accessibility

2.6 There is no longer a railway station at Corby, although there is a bus link to Kettering which operates from Corby town centre every half an hour throughout the day. The journey takes around 20 minutes.
2.7 Kettering station is located around 12 kilometres to the south of the site. This is on the Midland mainline between St Pancras and Sheffield, serving Leicester and Derby to the north, and Bedford and Luton to the south. Two services operate in each direction throughout the day.

2.8 There are no bus stops on Gretton Brook Road or Gretton Road. The nearest stops are on the A6116 Steel Road within the industrial estate. These comprise of posts, which are served by bus routes 3 and 4 operated by Stagecoach. These services only operate during the peak periods. Table 3 summarises the routes and frequency of service.

Table 3 Bus Routes

<table>
<thead>
<tr>
<th>Service</th>
<th>Route</th>
<th>Peak Hour Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B</td>
<td>Kettering Library – Dunedin Rd – Steel Road - ASDA</td>
<td>Hourly</td>
</tr>
<tr>
<td>4</td>
<td>ASDA – Steel Rd – Exeter Estate – Welland Vale – George St</td>
<td>2 per day</td>
</tr>
</tbody>
</table>

Walking and Cycling

2.9 There are no footways along Gretton Brook Road or Gretton Road, although there are wide verges in places, which could be used by pedestrians. There are also no cycle routes in the area, although the very low traffic flows in this location provides the potential for cycling along the route.

2.10 There is a public footpath from the farm access on Gretton Road across the farm land to Fullen Lane, a minor road south of Gretton.

Priors Hall

2.11 Consent has recently been given to a large mixed use development called ‘Priors Hall’. This will be situated to the south of Kirby Lodge, bounded to the north by Kirby Lane, to the west by Gretton Road and to the south by the A43. The development comprises over 5,000
residential units, employment, retail and leisure facilities, and both a primary and secondary school.

2.12 Access to the development will be from the A43 to the south and Gretton Road to the west. Although the development will generate a considerable number of road trips, the road network is being upgraded to accommodate the additional vehicles. In addition, a new bus service will be introduced with bus stops throughout the site. Footways and cycleways will also be provided.
3.0 POLICY BACKGROUND

3.1 The proposed development will provide a facility for treating biodegradable waste to produce compost. This will reduce the quantity of waste transferred to landfill sites and is in accordance with government policy to increase levels of recycling nationally. National guidance on waste management is contained in PPS 10: Planning for Sustainable Waste Management, while sustainability issues are included in PPG 13:Transport.

Planning Policy Statements 10: Planning for Sustainable Waste Management

3.2 The issues relating to PPS10 are addressed in the Supporting Statement that accompanies the planning application, of which this Transport Assessment forms part.

Planning Policy Guidance 13: Transport

3.3 The objectives of PPG 13 are to integrate planning and transport at the national, regional, strategic and local level to;

- promote more sustainable transport choices for both people and for moving freight;
- promote accessibility to jobs, shopping, leisure facilities and services by public transport, walking and cycling, and
- reduce the need to travel, especially by car.

3.4 The proposed development is located near an industrial estate which employs a large number of people. There is some public transport available at the site at present, and this will be enhanced through improvements associated with the consented Priors Hall development. However, only around three staff will be employed at the site, thus the impact of staff trips will be minimal.

Northamptonshire Structure Plan

3.5 Northamptonshire Structure Plan 1996 – 2016 remains in force until September 2007, except where it has been superseded by the Regional Spatial Strategy or the South Midlands Sub Regional Study. The Structure Plan states as two of its objectives,
• ‘To increase the reuse, recycling and recovery of waste’
• ‘To have ended the reliance on landfilling by the end of the plan period’

3.6 The Structure Plan goes on to say that the Waste Local Plan will determine the feasibility of a number of locations for Waste Management facilities.

3.7 Northamptonshire Waste Local Plan 2003 – 2016 was adopted in March 2006. The aim of the plan is to improve facilities for waste management, and reduce reliance on landfill. The strategy includes measures to ensure transport of waste from its source is minimised.

3.8 The report states that traffic and access should not create unacceptable impacts on the local community or the highway network, and that sites should be located as close as is possible to the strategic highway network. Waste haulage vehicles should be routed along identified routes. Developments will only be permitted where the site access and local highway network can accommodate the additional traffic.

Summary

3.11 National, regional and local policies are all supportive of the introduction of waste management facilities, so long as there is no detrimental impact on the road network, and that they do not compromise other environmental criteria. The proposed development fulfils all of the policies outlined above, as it is located away from residential areas, near to an industrial estate with a good local road network, and it has very good transport links to the strategic road network.
4.0 THE PROPOSED DEVELOPMENT

4.1 It is proposed to develop a composting facility at Kirby Lodge, Gretton Road, in Corby. Food and green waste will be brought in to the site in lorries, composted on the site and the majority of the compost will be used on the farm, while the lorries leave empty.

4.2 Kirby Lodge is currently a farm, mostly comprised of arable land, but also with some beef cattle. The arable farming will continue, while some of the beef stock will be replaced by the proposed composting facility.

4.3 The existing accesses at the apex to the bend on Gretton Road will be improved. The access has been designed to accommodate the large vehicles that will travel to the site.

4.4 Details of the proposed access arrangements are shown at Figure 1, whilst AutoTRACK Assessments of the site access are included in Appendix B. It can be seen that the access complies with current geometric standards including the provision of visibility splays based on the recorded vehicular speeds along Gretton Road.
5.0 TRIP GENERATION AND DISTRIBUTION

5.1 It is anticipated that the site will compost around 30,000 tonnes of materials per year, which will travel to the site in refuse collection vehicles and bulk HGVs with an average load of eight tonnes. The site will therefore generate around 15 two-way trips per day.

5.2 The site will be operated by around three or four people. Trip generation associated with staff at the site will therefore be negligible.

5.3 For the purposes of this assessment, it has been assumed that no trips will be removed from the road network as a result of the loss of part of the farmland to provide the facility. In reality, the loss of the beef farming will reduce the number of trips generated by the site, however, if this is excluded, it will ensure a robust analysis.

5.4 The majority of trips generated by the site will originate in Corby or the local area. Trips are therefore likely to use the roads through the industrial estate to travel to Corby, or the routes to the east.
6.0 HIGHWAY IMPACT

6.1 The ATC data shows that there are currently very low traffic flows on Gretton Brook Road near the site. Table 4 summarises the additional trips resulting from the proposal, and shows that there will be only around three additional trips during the peak hours. This will have a negligible impact on the local highway network, with an increase in traffic of less than 5% in both peak periods and over a 12 hour period.

<table>
<thead>
<tr>
<th></th>
<th>AM Peak</th>
<th>PM Peak</th>
<th>12 Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed Trips</td>
<td>106</td>
<td>94</td>
<td>736</td>
</tr>
<tr>
<td>Development Trips</td>
<td>3</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Total Trips</td>
<td>109</td>
<td>97</td>
<td>766</td>
</tr>
<tr>
<td>% Change</td>
<td>2.75</td>
<td>3.09</td>
<td>4.08</td>
</tr>
</tbody>
</table>

6.2 When the Priors Hall development is completed, traffic flows on Gretton Road and Gretton Brook Road are likely to increase, however the impact of the scheme has been shown to be minimal even without the additional trips. Highway works associated with the Priors Hall development will ensure that the local highway network can accommodate the additional vehicles.

6.3 Around three or four staff are likely to be employed at the site, the impact of trips associated with these staff will be negligible.
7.0 SUMMARY AND CONCLUSIONS

7.1 DT Transport Planning Limited has been appointed by B J Reading and son to prepare this Transport Assessment in support of a planning application to develop a composting facility at Kirby Lodge on the north east side of Corby.

7.2 Kirby Lodge is located near an industrial estate, and the surrounding road network has been designed to accommodate heavy goods vehicles. There are good road links to the A6003 and A14 to the south and west, and to the A43 to the east. A large mixed use development located to the south of Kirby Lodge has been given planning consent. The road network will be upgraded to accommodate the additional vehicles associated with this scheme.

7.3 Kirby Lodge currently operates as a farm, with both arable crops and beef stock. The composting facility will replace the beef reared at the site.

7.4 It is anticipated that the proposal will generate around 15 two-way heavy goods vehicle trips per day, giving a maximum of around three two way trips per hour. These additional trips have been shown to generate less than a 5% increase in traffic on Gretton Brook Road, and the impact of the proposal can therefore be considered to be negligible.

7.5 It can therefore be concluded that the proposed development will have a negligible impact on the operation of the local highway network. We therefore consider that there are no highway or transport reasons why planning permission should not be granted.
APPENDIX A

ATC DATA
APPENDIX B

AutoTRACK DATA
Extent of 2.4m x 160m visibility strip

Extent of 2.4m x 160m visibility strip
INTRODUCTION:

Count On Us was instructed by DT Transport Planning Limited to undertake an Automatic Traffic Count on Gretton Brook Road, Corby.

The survey was undertaken for a 7-day period commencing Monday 19th February 2007. The results are presented within this report.

METHODOLOGY:

To undertake the count, a set of parallel pneumatic road tubes were installed at the location separated by a distance of 36 inches. The tubes were then connected to an Automatic Traffic Counter which was set to obtain classified directional traffic flows in hourly intervals, the counters were also set to collect vehicle speeds in twelve speed bins as detailed below:

- \(<11 \text{ mph}\)
- \(11 - <21 \text{ mph}\)
- \(21 - <31 \text{ mph}\)
- \(31 - <41 \text{ mph}\)
- \(41 - <46 \text{ mph}\)
- \(46 - <51 \text{ mph}\)
- \(51 - <56 \text{ mph}\)
- \(56 - <61 \text{ mph}\)
- \(61 - <66 \text{ mph}\)
- \(66 - <71 \text{ mph}\)
- \(71 - <76 \text{ mph}\)
- \(76 - \text{ mph}\)

This report contains Volumetric Data, Speed Data and Class Data which was emailed to Hilary Lofmark at DT Transport Planning Limited on Wednesday 7th March 2007.

Throughout the duration of the survey, the equipment was regularly monitored to enable continuity of data collection.

CONTENTS:

Introduction
Location Plan
Site Photograph
Volumetric Data
Speed Data
Class Data
Location Plan:

Site Photograph:
<table>
<thead>
<tr>
<th>Site No: 33257001</th>
<th>Location</th>
<th>Channel: Northbound</th>
<th>Mon 19-Feb-07</th>
<th>Sun 25-Feb-07</th>
<th>Total Vehicles</th>
<th>5 Day Ave.</th>
<th>7 Day Ave.</th>
<th>85%ile Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>33257</td>
<td>Gretton Brook Rd, Corby (Deer Warning Sign) SP91613 91885</td>
<td>2504</td>
<td>419</td>
<td>358</td>
<td>49.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Channel: Southbound</td>
<td>Mon 19-Feb-07</td>
<td>Sun 25-Feb-07</td>
<td>2518</td>
<td>418</td>
<td>360</td>
<td>44.7</td>
<td></td>
</tr>
<tr>
<td>Site No: 33257001</td>
<td>Location</td>
<td>Direction</td>
<td>Start Date</td>
<td>End Date</td>
<td>PSL</td>
<td>Mean Speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gretton Brook Rd, Corby (Deer Warning Sign) SP91613 91885</td>
<td>Channel: Northbound</td>
<td>Mon 19-Feb-07</td>
<td>Sun 25-Feb-07</td>
<td>60</td>
<td>41.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Channel: Southbound</td>
<td>Mon 19-Feb-07</td>
<td>Sun 25-Feb-07</td>
<td>37.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>