Planning Statement for proposed classroom and playground extensions at:

All Saints School,
Wellingborough,
Castle St,
Wellingborough NN8 1LS
Design, Access and Planning Statement for proposed classroom, playground and studio extensions at:

All Saints School, Wellingborough, Castle St, Wellingborough NN8 1LS

Aerial view of All Saints Primary School with the site outlined in red (NTS)

1.0 Introduction:
The original Victorian School at All Saints in Wellingborough is constructed in brickwork and stone under a natural slate roof. Later extensions to the school include brickwork and render with a combination of concrete tile and mineral felt flat roofing. The school is a successful, well established and integral part of the town community and the existing buildings are well maintained and in good condition.

The site is very confined, lacking playground and outdoor space. The existing building bridges 3-4 levels across the sloping site.

There is no parking on site, due to the limits of the site size and configuration. Emergency and other vehicles are able to access the site via a side road leading to the main playground.

There is an existing 2 storey Victorian property between the school and access road to the North West of the site.
A stream follows the Southern boundary of the site and provides separation between the school and neighbouring properties.

The existing school building is of architectural merit in terms of its intricate detailing to windows and roofs. The building is typical of its era and is not listed.

The Headteacher and Governors have identified several areas of improvement which are required within the school as follows:

Justification of Proposal

- New Education Funding Agency compliant sized classroom. This is necessary since 2 existing classrooms are undersized and 1 of these is a through-space which causes disruption during lesson time.
- Covered area for Reception classroom. This is to replace the existing polycarbonate canopy which is in poor condition and poses maintenance issues.
- Outdoor playground. This is necessary as the existing playground provision is inadequately sized and providing an additional playground would enable the school to split the year groups more effectively, making this a safer and better environment for the pupils.
- Disabled toilet to entrance lobby as none exists presently
- Additional pupil toilets as there are insufficient toilet numbers presently and these are spread across all floors of the school, which causes disruption during lesson time and is a staffing/ resources issue during school playtime.

A. View from Castle Street.
B. Close up view from Castle Street. Classroom in foreground

C. Vehicle entrance between school and neighbouring property
D. View towards school from Castle Street with neighbouring property in foreground

E. Rear of neighbouring property
F. Existing playground to East

G. Existing single storey classroom facing East. Existing Reception Classroom canopy to rear of red rendered wall
H. Two storey classroom block facing East
Existing Site Location Plan (NTS)
Existing Site Plan (NTS)
Existing Lower Ground Floor Plan (NTS)
2.0 Planning Policy

The design has been developed to comply with the following policies/guidance:

- National Planning Policy Framework and policies within North Northamptonshire Joint Core Strategy (JCS)
- Local Plan 2016 saved policies
- The new plan for the borough of Wellingborough (PBW)

3.0 Conservation Area

The site lies outside the Conservation Area, which borders the opposite side of Castle Street.

The site is obscured by the existing school building and sits at the bottom of the sloping school site. It is therefore not visible from the Conservation Area. The proposed new building would therefore have no impact on the conservation area.

The design of the building is such that it uses high quality face brickwork and western red cedar boarding, to compliment and match the existing school and...
surrounding buildings. This approach is to complement the existing setting of high quality buildings found in the locality and bordering the Conservation area.

Conservation Area in green above

4.0 Site Analysis

The site analysis identified key areas that could be developed within the constraints of the existing site.

The existing single storey, flat roofed classroom and adjacent Reception polycarbonate canopy are two areas that are central to the school and have already been built upon. These areas present the opportunity to develop a new classroom above the flat roof with an adjacent raised external playground space. The playground would become the permanent roof covering to the Reception classroom play area below. There would be no loss of site area or playground space as a result of the above.

5.0 Design Proposal

The new classroom proposal is to build over the existing single storey classroom, utilising the existing footprint. The new classroom would be finished in sustainable lightweight cedar boarding and would link through to the ground floor accommodation.
The proposed playground terrace replaces the existing polycarbonate canopy to the Reception classroom play area. The new playground would be constructed in concrete and finished in a slip resistant play surface. The terrace has edge protection and fencing to the perimeter. The playground level is set such that the new and existing classrooms all have direct access to outside.

In conjunction with the above, internal rearrangements would be made to the existing accommodation to create an enlarged 55m² classroom, Disabled WC from the Entrance Lobby and male and female toilets for the school.

6.0 Design and Appearance:

.1 Classroom

The new classroom sits above the existing lower ground floor accommodation and has a lightweight cedar boarding finish to complement the existing brickwork.
Lightweight classroom block finished in western red cedar boarding.

Western red cedar high quality boarding

2 Playground Terrace
The new terrace replaces the existing unserviceable covered canopy which is prone to leaking and ongoing maintenance issues. The structure to this is exposed concrete and there would be pavement lights set into the concrete to provide daylight to the classrooms below. The concrete and stair is finished with brickwork to marry in with the existing building and give the whole structure a sense of solidity.
Windows and doors would be durable aluminium with a Polyester powder coated finish.

![Aluminium Window](image.png)

7.0 Usage

Extensions to the existing School will primarily be used by children aged 5-10 years old.

8.0 Accommodation

The new accommodation consists of:

- 55m² Classroom
- Playground Terrace with outdoor (unheated) space below
- Rearrangement of existing accommodation including classroom, male and female w.c’s and a Disabled W.C to the main entrance area.

9.0 Layout

The layout of the new proposals make use of the existing School circulation to connect with the existing buildings. The school is on a very restricted site and we have made the best possible use of available space without compromising the outdoor play areas.

10.0 Scale

The scale of the original historic School building will retain its prominence since all new extensions are subservient to the existing building in scale and massing.

All new extensions are limited to single storey in height. There is a bank of rooflights to the East elevation and these will bring natural daylight and ventilation into the space.
11.0 Sustainable Design and Landscaping.

The following low energy and sustainable measures have been incorporated within the design:

- High thermal efficiency envelope- walls, floor, roof, windows, rooflights
- Airtightness to achieve 5m3/hm3
- Solar shading ‘brises soleil’ to South facing windows
- Argon filled double glazed aluminium windows
- Use of solar pipes to existing classroom
- Natural ventilation
- Use of sustainable western red cedar timber boarding to external walls

Existing hard and soft landscaping will be retained where possible and this will be low maintenance.

It is intended to provide a non-slip, waterproof finish to the Playground terrace and steps, and this will be enhanced with soft landscaping within pots to the terrace itself.

12.0 Access

1 Transport and Parking

The village is well served by local bus routes Wellingborough town centre and the surrounding villages. Pupils living locally are dropped off and also walk and cycle to School.

There is no parent, staff or visitor parking within the School site and this would remain.

There is no intended increase in pupil or staff numbers as a result of the new extensions to the School. The proposals are to improve the existing facilities on a severely restricted site.

There is on-street parking locally within Wellingborough and the surrounding streets.

2 Inclusive Access

The new accommodation would be set at the same floor level of the existing building to provide level thresholds and ambulant disabled access across the whole School. New ramped access would be provided where necessary. The external doors would also have level thresholds into the building.

13.0 Materials and Colour Contrast:

All areas have a combination of durable materials including plastered painted walls, and durable carpet tile, wooden and vinyl flooring finishes throughout. Materials have been chosen for their colour contrasting qualities to comply with the recommendations of Building Regulations Part M (2015) and the Equality Act 2010. Changes in floor materials will have level thresholds between materials.
PHASE 1 BAT AND NESTING BIRD SURVEY

ALL SAINTS CEVA PRIMARY SCHOOL, CASTLE STREET, WELLINGBOROUGH, NORTHAMPTONSHIRE, NN8 1LS

Date: 23rd January 2017

Client: All Saints CEVA Primary School

Ridgeway Ecology Ltd
36 Chichester Lane, Hampton Magna, Warwick, Warwickshire, CV35 8TG, UK

Tel: 01926 259182
Mob: 07973445101
Email: enquiries@ridgewayecology.co.uk
Web: www.ridgewayecology.co.uk
General Report Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report title</td>
<td>Phase 1 Bat and Nesting Bird Survey Report</td>
</tr>
<tr>
<td>Client</td>
<td>All Saints CEVA Primary School</td>
</tr>
<tr>
<td>Location</td>
<td>All Saints CEVA Primary School, Castle Street, Wellingborough, Northamptonshire, NN8 1LS</td>
</tr>
<tr>
<td>Lead ecologist</td>
<td>Dr. J. M. Russ</td>
</tr>
<tr>
<td>Report author</td>
<td>Dr. J. M. Russ</td>
</tr>
</tbody>
</table>
Contents

1 Introduction .. 4
 1.1 Background to activity/development .. 4
 1.2 Site description ... 4
 1.3 Proposed works ... 4
 1.4 Planning and legislative context ... 4
 1.5 Objectives .. 7

2 Methods .. 8
 2.1 Pre-survey data search ... 8
 2.2 Surveyor information .. 8
 2.3 Field surveys .. 8
 2.3.1 Habitat survey .. 8
 2.3.2 Bat roost/Nesting bird survey(s) .. 8
 2.3.3 Bat activity survey(s) .. 9

3 Results .. 10
 3.1 Pre-survey data search ... 10
 3.1.1 Designated sites .. 10
 3.1.2 Protected species .. 10
 3.2 Field Surveys .. 10
 3.2.1 Habitat description .. 10
 3.2.2 Bat roost/Nesting bird survey(s) .. 10
 3.2.3 Bat activity survey(s) .. 12
 3.2.4 Interpretation and evaluation of survey results ... 12

4 Assessment .. 13
 4.1 Constraints ... 13
 4.2 Potential impacts of the development ... 13

5 Recommendations and mitigation .. 14

6 References ... 14

Figures .. 17

Photographs ... 18
1 Introduction

1.1 Background to activity/development
This report has been prepared by Dr Jon Russ at the request of Andrew Thomas of Grayling Thomas Architects Ltd acting on behalf of their client, All Saints CEVA Primary School. Planning consent is being sought from the Borough Council of Wellingborough to extend All Saints CEVA Primary School, Castle Street, Wellingborough, Northamptonshire. The local planning authority will require a bat and nesting bird survey to inform the planning process.

1.2 Site description
The site proposed for development, All Saints CEVA Primary School (GR: SP897677), is situated on the eastern side of Castle Street in the market town of Wellingborough, Northamptonshire (Figure 1). The site is surrounded by dwellings with gardens except to the south-east which is amenity grassland containing scattered and boundary trees. Swanspool Brook runs along the southern boundary of the site and the River Nene is located 1 km to the south. Woodland within 2 km of the site is sparse, but on the 2km boundary to the south-east is Irchester Country Park which consist of 80 ha of broadleaf woodland. The woodland and running water are considered to be good foraging habitat for bats.

1.3 Proposed works
Planning consent is being sought from the Borough Council of Wellingborough to extend All Saints CEVA Primary School, Castle Street, Wellingborough, Northamptonshire.

1.4 Planning and legislative context
The information below is intended only as guidance to the legislation relating to these species. The Acts themselves should be referred to for the correct legal wording.

Bats – Legislative context
All bats are included in Schedule 2 of The Conservation of Habitats and Species Regulations 2010, which implement the requirements of the Habitats Directive in England, Scotland and Wales and in Schedule 2 of the Conservation (Natural Habitats, &c.) Regulations (Northern Ireland) 1995 (as amended) which implement the requirements of the Habitats Directive in Northern Ireland. Bats and their breeding sites or resting places are protected under Regulation 39. An amendment to the Conservation (Natural Habitats, etc.) Regulations (Northern Ireland) 1995 came into force in Northern Ireland on 21st August 2007 (Conservation (Natural Habitats, etc.) (Amendment) Regulations (Northern Ireland) 2007).

It is an offence for anyone without a license to:
- Intentionally or recklessly/deliberately injure, take or kill a bat;
- To possess a bat (unless obtained legally) whether alive or dead;
- Intentionally or recklessly/deliberately damage, destroy or obstruct access to any place that bats use for shelter or protection whether bats are present or not;
- Intentionally or recklessly/deliberately disturb a bat while it is occupying a structure or place that it uses for shelter or protection.
- deliberately disturb bats in such a way as to be likely significantly to affect—
 (i) the ability of any significant group of bats to survive, breed, or rear or nurture their young; or
(ii) the local distribution or abundance of that species;

Prosecution could result in imprisonment, fines of £5,000 per animal affected and confiscation of vehicles and equipment used.

Recent amendments to the Habitat Regulations in 2007 have removed many of the defences. This includes the commonly relied upon ‘incidental result defence’, which previously covered acts that were the incidental result of an otherwise lawful activity and which could not reasonably have been avoided. As the incidental result of a lawful operation defence has been removed from legislation (Conservation (Natural Habitats, &c.) (Amendment) Regulations 2007) operators are now open to this strict liability offence, whether the damage occurs by accident or not. An offence will only be committed if the deliberate disturbance is likely to significantly affect a significant group of animals of that species’ ability to survive, breed, or rear or nurture its young or is likely to significantly affect the local distribution or abundance of that species. Deliberate disturbance of a protected animal (species on Schedule 5 which includes EPS) in its place of shelter or protection will continue to be an offence under the Wildlife and Countryside Act 1981. However, the incidental result of a lawful operation defence will be available for that offence where the disturbance could not have been reasonably avoided.

In England, Scotland and Wales all bat species are protected under the Wildlife and Countryside Act 1981 (WCA) (as amended) through inclusion in Schedule 5. The existing offences under the Wildlife and Countryside Act (1981) as amended which cover obstruction of places used for shelter or protection, disturbance and sale still apply to European protected species.

In England and Wales, the WCA was amended by the Countryside and Rights of Way Act 2000 (CRoW), which adds an extra offence (‘or recklessly’ to S9(4)(a) and (b)), makes species offences arrestable, increases the time limits for some prosecutions and increases penalties.

Exemptions can be granted from the protection afforded to bats under the Habitat Regulations, by means of a EPS (European Protected Species) Habitats Regulations licence obtained from Natural England.

A ‘EPS Habitats Regulations Licence’ could be required for:

- Demolition of a building known to be used by bats prior to development of a site
- Conversion of barns or other buildings known to be used by bats
- Removal of trees known to be used by bats as well as tree pruning
- Significant alterations to roof voids known to be used by bats
- Road building or widening
- Bridge strengthening

There are three tests, which must be satisfied, before a licence can be issued to permit otherwise prohibited acts:

- Regulation 53(2)(e), for the purpose of preserving public health or public safety or other imperative reasons of overriding public interest including those of a social or economic nature and beneficial consequences of primary importance for the environment; or
- Regulation 53(2)(f) for the purpose of preventing the spread of disease; or
- Regulation 53(2)(g) for the purpose of preventing serious damage to livestock, foodstuffs for livestock, crops, vegetables, fruit, growing timber or any other forms of
property or to fisheries; subject to Natural England being satisfied that the application additionally meets:
 o Regulation 53(9)(a) that there is no satisfactory alternative; and
 o Regulation 53(9)(b) that the action authorised will not be detrimental to the maintenance of the species concerned at a favourable conservation status in their natural range.

A European Protected Species License is required before the commencement of any development that might impact on bats or their roosts.

Birds – Legislative context
All birds, their nests and eggs are protected by law under the Wildlife and Countryside Act 1981 (as amended). It is an offence, with certain exceptions, to:

- Intentionally kill, injure, or take (handle) any wild bird.
- Intentionally take, damage or destroy any wild bird nest whilst in use or being ‘built’.
- Intentionally take or destroy a wild bird egg.
- Have in one’s possession or control a wild bird (dead or alive), or egg, (unless one can show that it was obtained legally).

Some species of bird listed under Schedule 1 (e.g. Barn Owls, of the Act receive extra protection. For these species it is an offence to:

- Intentionally or recklessly disturb any wild bird whilst ‘building’ a nest or whilst in, on, or near a nest containing eggs or young.
- Intentionally or recklessly disturb any dependent young of wild birds.

Disturbance may be deemed reckless if it is committed by someone who could be expected to know that the bird(s) might be present but failed to check.

Under the 1981 Act (Part 1, section 25) local authorities are given the function of bringing this legislation to the attention of the public and may institute proceedings for any offence committed within their area. The police are empowered to enter onto any land and search, or stop and search, any person where an offence is suspected (section 14). Anyone found guilty of an offence is liable to a fine of up to £5,000 or to imprisonment for a term not exceeding six months, or both.

Planning policy and Biodiversity Action Plan context
The National Planning Policy Framework (NPPF) is guidance for local planning authorities on the content of their Local Plans, but is also a material consideration in determining planning applications. The NPPF has replaced much existing planning policy guidance, including Planning Policy Statement 9: Biological and Geological Conservation. However, the government circular 06/05: Biodiversity and Geological Conservation - Statutory Obligations and Their Impact within the Planning System, which accompanied PPS9 remains valid.

The Natural Environment and Rural Communities (NERC) Act 2006, in particular Section 40, places a duty on public bodies to have regard to the conservation of biodiversity. This duty is guided by the habitats and species lists in Section 41 of the Act, within which seven bat species are included: barbastelle (*Barbastella barbastellus*), Bechstein’s (*Myotis bechsteinii*), noctule (*Nyctalus noctula*), soprano pipistrelle (*Pipistrellus pygmaeus*), brown long-eared (*Plecotus auritus*), greater horseshoe (*Rhinolophus ferrumequinum*) and lesser horseshoe (*Rhinolophus hipposideros*) bats. These seven species are also listed as Priority Species within the UK.
Biodiversity Action Plan (UKBAP), (the UK Government’s response to the Convention on Biological Diversity).

1.5 **Objectives**
The bat survey was commissioned to assess:
- what species of bat are present at the site;
- what types of bat activity are occurring within the site;
- whether or not bats are roosting within the site; what population levels (size and importance) are present at the site;
- and to make recommendations on any further action that may be required to provide sufficient information for the local planning authority to support a planning application.

A nesting bird survey was commissioned to:
- determine the use or otherwise of the site by nesting birds;
- determine the value of the site to nesting birds;
- make an assessment of the potential impacts and effects of the proposed development of the site on nesting birds;
- determine the legal implications of the proposed development; and
- recommend appropriate mitigation measures to remove or reduce impacts.
2 Methods

2.1 Pre-survey data search
Records of bats within 1 km search radius of the site were obtained from the county mammal recorder, Phil Richardson.

2.2 Surveyor information
The survey was carried out by Dr Jon Russ CEnv, MIEEM (Natural England Licences 2015-11383-CLS-CLS (CL19 Bat Survey Level 3) and 2015-11384-CLS-CLS (CL20 Bat Survey Level 4)).

Dr. Jon Russ is a terrestrial and behavioural ecologist with a specialist interest in bats. As director of Ridgeway Ecology Ltd and through his academic research and work with the Bat Conservation Trust he has managed, designed and carried out large and small scale bat surveys and bat monitoring programmes in the UK and in the tropics. He has extensive experience of United Kingdom and European Union legislation regarding bats and has been a fully licensed bat worker for over 15 years, holding bat conservation, education and scientific licences for radio-tracking, mist-netting, ringing, harp-trapping, ultrasonic playback and DNA sampling. His publication record includes a large number of articles in scientific journals as well as other publications including the widely used book, “The Bats of Britain and Ireland: Echolocation, Sound Analysis, and Species Identification”, “Review of ASSI designation for bats in Northern Ireland”, “The Northern Ireland Bat Action Plans” which he coordinated and delivered and more recently “British Bat Calls: A Guide to Species Identification”. In addition, Jon has a great deal of experience of avoidance, mitigation and compensation measures relating to bats and development.

2.3 Field surveys
The bat survey was undertaken in accordance with current best practice guidelines, which include: Bat Mitigation Guidelines (Mitchell-Jones, 2004); The Bat Workers Manual (Mitchell-Jones & McLeish, 2004); and Bat Surveys: Good Practice Guidelines (Collins 2016).

A nesting bird survey was also undertaken in accordance with reference to Field Guide to Nests, Eggs and Nestlings of British and European Birds (Collins Field Guide 1985); Survey Techniques (Barn Owl Trust 2010); and Barn owls on site: A guide for developers and planners 2nd Edition (English Nature 2002).

2.3.1 Habitat survey
A survey of the habitats that may be used by roosting bats and nesting birds was carried out.

2.3.2 Bat roost/Nesting bird surveys
On the 20th January 2016 the building and border vegetation were surveyed for potential roost sites and signs of bats. The survey utilised a ladder, a high-powered torch, binoculars and a video endoscope (Ridgid Micro CA-300 with 6mm, 9mm and 17mm camera heads). The external inspection of the building involved looking for bat droppings on the ground, stuck to walls or roof slates and on windows and sills and recording suitable entry and exit points. The internal inspection focused on those areas which may be suitable for roosting bats, such as
ridge slates, gable walls, joints and crevices in wood, crevices in walls as well as searching for bat droppings and feeding signs on the floors and other surfaces.

The following criteria were used to determine bat roosting potential of the building.

Table 1. Description of bat roosting potential categories

<table>
<thead>
<tr>
<th>Roosting potential</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Buildings that have many areas suitable for roosting with a large number of potential access points. These are normally in sheltered locations, subject to low variation in temperature. Buildings with good potential could be used for a whole range of roosts including maternity roosts.</td>
</tr>
<tr>
<td>Moderate</td>
<td>Buildings with a smaller number of areas suitable for roosting, but still supporting features that could be attractive to bats and potentially support maternity roosts.</td>
</tr>
<tr>
<td>Limited</td>
<td>Buildings with limited roosting opportunities. These may be in locations that are subject to wide temperature fluctuations and drafts. They could be used as occasional or transient roosts, but are unsuitable for maternity roosts. Buildings that would otherwise be moderate to good potential but have reduced value due to other factors such as exposed location, separation from nearby foraging habitat, or presence of strong streetlight.</td>
</tr>
<tr>
<td>Low</td>
<td>Buildings that have no obvious places for bats to roost, but could be used on a sporadic or occasional basis for feeding or solitary day roosting.</td>
</tr>
<tr>
<td>Negligible</td>
<td>Buildings which appear unsuitable for roosting bats due to clear lack of roosting spaces such as voids etc and/or absence of suitable access points. Such buildings in practice are rare.</td>
</tr>
</tbody>
</table>

In addition, a general search was made in and around the building and border vegetation for signs of nesting birds such as pellets, feathers, droppings, nests and nest debris.

2.3.3 Bat activity survey(s)

n/a
3 Results

3.1 Pre-survey data search

3.1.1 Designated sites

There are 2 designated sites within 2 km of the site:
- Wollaston Meadows is a Site of Special Scientific Interest (SSSI) located 2 km south of the site and comprises an area of Neutral Lowland Grassland.
- Upper Nene Valleys Gravel Pits is a Site of Special Scientific Interest (SSSI) located 1.6 km south-east of the site and comprises an area of standing Water.

3.1.2 Protected species

The results of a data search of bat records within 1 km of the site revealed that there were numerous records of bats within 1 km of the site although none of the records were within 350m. Records included pipistrelle bats (10), common pipistrelles (1), soprano pipistrelles (1), brown long-eared bats (7), Daubenton’s bat (2), Natterer’s bat (1), whiskered bat/Brandt’s bat (1) and noctule (2).

3.2 Field Surveys

3.2.1 Habitat description

The focus of the survey is an L-shaped brick school building consisting of an original main part orientated east to west and a newer south wing orientated north to south (Photographs 1-7). There is a two-storey extension adjoining the south wing in the west playground and a flat-roofed single-storey extension in the east playground. The gable roofs of the main building, including those on the dormer windows, are covered with slates and are lined with a traditional bitumastic lining. The gable roofs of the south wing are covered with interlocking concrete tiles and are also lined with a traditional bitumastic lining.

3.2.2 Bat roost/Nesting bird survey(s)

Bats

Potential Bat Access Points

The roofs of the main building and the south wing appear to be almost completely sealed (e.g. Photographs 8 and 9) with the exception of some openings under the lead flashing and tiles surrounding the dormer windows on the main part of the building (e.g. Photograph 10) and an opening under lead flashing on the south wing (Photograph 11).

On the central dormer window on the north-facing roof pitch of the main part of the building there is an opening in the concrete infill (Photograph 12).
The soffit of the single-storey extension along the eastern side of the building are completely sealed (e.g. Photograph 13) as are the soffits on the south-facing gable wall on the main part of the school (Photograph 14).

Along the northern side of the building there are openings between the wall and the rafter tails (e.g. Photograph 15) and also between the wall and the soffits (e.g. Photograph 16). Generally these are filled with cobwebs and dust.

There is an opening between the west-facing gable wall and the soffit on the main part of the school (Photograph 17) and a gap between the south-facing gable wall of the two-storey extension and the soffit (Photograph 18).

Bat Roosting Potential:

There is a large enclosed roof void within the south wing (e.g. Photographs 19-22) measuring approximately 30m by 6m with a floor to ridge height of 2.5m and also a large enclosed roof void in the main part of the school measuring approximately 20m by 6m with a floor to ridge height of 2.5m (e.g. Photographs 23-27). Both voids contain exposed timbers suitable for perching but generally the voids are extremely dusty (e.g. Photograph 28 and 29) which may deter bats from using them and within the void in the main part of the school the light penetrating through the dormer windows may also limit its use during the day. Access to the voids appears to be extremely limited and possibly non-existent.

The numerous cavities between the tiles (or slates), laths and lining could be used by crevice-dwelling species, such as those of the genus *Pipistrellus* and the small *Myotis* (e.g. Photograph 20 and 21). However, again access appears to be extremely limited.

There are cavities beyond the openings between the north-facing wall and the rafter tails and between the north-facing wall and the soffit which could be used by roosting bats. However, the cavities appear to be quite dusty and full of cobwebs. This is also case for the cavity between the west-facing gable wall and the soffit on the main part of the school and the gap between the south-facing gable wall of the two-storey extension and the soffit.

Evidence of Bats:

No evidence of bats (actual sightings, droppings, feeding remains, scratch marks, associated staining) was recovered during the internal and external inspection of the school. The majority of potential roosting sites could be inspected with the exception of the cavities between the tiles (or slates), laths and lining (although access to these is extremely limited).

There was no evidence of potential roosting features within the vegetation along the southern boundary in the vicinity of the proposed development.

Nesting birds

Birds could make use of a number of features within the building for nesting including cavities beyond openings between the soffits and walls and beyond the rafter tails and walls as well as the eaves of the building.
Evidence of Nesting birds:

There was evidence that birds have nested in the cavity beyond an opening between the west-facing gable wall and the soffit on the main part of the school (Photograph 17) and possibly in the cavity beyond the gap between the soffit and the north-facing wall (e.g. Photograph 16).

There was no evidence of nesting birds within the vegetation along the southern boundary in the vicinity of the proposed development.

3.2.3 Bat activity survey(s)

n/a

3.2.4 Interpretation and evaluation of survey results

Bats

Presence/absence: There was no evidence of bats within those area of the building that could be visually inspected. It was not possible to inspect the cavities between the tiles (or slates), laths and lining (although access to these is extremely limited).

Population size class assessment: n/a

Site status assessment: The building is considered to be of limited bat roosting potential (see Table 1) as although there are numerous potential roosting sites such as the large enclosed roof voids and the cavities between the tiles (or slates), laths and lining access to these is extremely limited.

Birds

Presence/absence: There was evidence that birds have nested in an opening between the west-facing gable wall and the soffit on the main part of the school and possibly in the cavity beyond the gap between the soffit and the north-facing wall. It was not possible to determine the species.

Site status assessment: The bird nesting potential of the building as a whole is considered to be limited as there are a small number of potential nesting sites but with good foraging habitat nearby (see 3.2.2).
4 Assessment

4.1 Constraints
It was not possible to inspect the cavities between the tiles (or slates), laths and lining/timber sarking or the enclosed roof void within the malt house as the floor was unsafe.

4.2 Potential impacts of the development

Planning consent is being sought from the Borough Council of Wellingborough to extend the school. This will involve the construction of a two-storey flat-roofed extension along the eastern side of the south wing with the new roof meeting the existing roof just above the level of the eaves and the construction of a first floor extension along the northern side of the building. As the roofs and eaves are completely sealed within those areas of the existing building that will be affected by the proposed extensions (Photographs 30 and 31) it is unlikely that this work will have an impact upon bats populations. In addition, as there is no evidence of birds nesting under the eaves (or anywhere else) within these areas the work is also unlikely to have a direct impact upon nesting birds. Furthermore, there is unlikely to be an impact upon protected species utilising the southern boundary vegetation (or Swanspool Brook), which will not be affected by the proposed work (e.g. Photograph 32).
5 Recommendations and mitigation

There was no evidence of bats roosting within All Saints CEVA Primary School building, Castle Street, Wellingborough (see 3.2.2 and 3.2.4). The building is considered to be of limited bat roosting potential as although there are numerous potential roosting sites such as the large enclosed roof voids and the cavities between the tiles (or slates), laths and lining access to these is extremely limited. As all of the potential roosting sites that will be affected by the proposed work could be inspected no further survey work is considered necessary.

Planning consent is being sought from the Borough Council of Wellingborough to extend the school. This will involve the construction of a two-storey flat-roofed extension along the eastern side of the south wing with the new roof meeting the existing roof just above the level of the eaves and the construction of a first floor extension along the northern side of the building. As the roofs and eaves are completely sealed within those areas of the existing building that will be affected by the proposed extensions (Photographs 30 and 31) it is unlikely that this work will have an impact upon bats populations. Furthermore, there is unlikely to be an impact upon protected species utilising the southern boundary vegetation (or Swanspool Brook), which will not be affected by the proposed work (e.g. Photograph 32). Therefore, no planning restrictions with respect to bats are considered necessary. However, it is recommended that:

- All work is carried out carefully with the expectation that bats may be found. If bats are observed within the building at any time Natural England (0300 0601582) or the ecologist for this project must be contacted. Work must cease immediately and it may be necessary to obtain a European Protected Species licence from Natural England before work can proceed.

There was evidence that birds have nested in an opening between the west-facing gable wall and the soffit on the main part of the school and possibly in the cavity beyond the gap between the soffit and the north-facing wall. It was not possible to determine the species. However, as there is no evidence of birds nesting under the eaves (or anywhere else) within these areas the work is also unlikely to have a direct impact upon nesting birds. Nevertheless it is recommended that:

- Care should be taken to ensure that no nesting birds are present in those areas of the school to be affected by the proposed extension, prior to undertaking the proposed work. If any active nests are discovered then work in the immediate vicinity of the nest should cease and an appropriate buffer zone (agreed with an ecologist) should be established which should be left in place until it has been confirmed that the young have fledged.
6 References

Figures

Figure 1. Location of the site (arrowed). 2006. Crown Copyright; Ordnance Survey. Scale 1: 50 000
Photographs

Photograph 1. The west elevation of the main part of the school

Photograph 2. The south elevation of the main part of the school

Photograph 3. The west elevation of the south wing of the school

Photograph 4. The north and west elevations of the main part of the school

Photograph 5. The north elevation of the south wing of the school

Photograph 6. The south and east elevations of the south wing of the school
Photograph 7. The east elevation of the south wing of the school

Photograph 8. Example of the interlocking concrete tiles on the south wing of the school

Photograph 9. Example of slates on the roof of the main part of the school

Photograph 10. Example of an opening under the lead flashing and tiles surrounding a dormer window

Photograph 11. Opening under the lead flashing on the west facing part of the south wing

Photograph 12. Opening in the concrete infill on the central dormer window on the north-facing roof pitch
Photograph 13. Example of the soffit on the single-storey extension to the rear of the school	Photograph 14. The soffit on the south-facing gable wall on the main part of the school
Photograph 15. Example of an opening between the north-facing wall and a rafter tail on the main part of the school	Photograph 16. Example of an opening between the north-facing wall and the soffit on the main part of the school
Photograph 17. Opening between the west-facing gable wall and the soffit on the main part of the school	Photograph 18. Gap between the south-facing gable wall of the two-storey extension and the soffit
Photograph 19. The enclosed roof void within the south wing (central section, view to south)
Photograph 20. The enclosed roof void within the south wing (south section, view to north)

Photograph 21. The enclosed roof void within the south wing (north section, view to north)
Photograph 22. Example of exposed roof timbers within the enclosed roof void in the south wing

Photograph 23. The eastern end of the enclosed roof void within the main part of the school
Photograph 24. The enclosed roof void within the main part of the school (central section, view to west)
Photograph 25. The enclosed roof void within the main part of the school (western section, view to west)

Photograph 26. Example of a north-facing dormer window in the enclosed roof void within the main part of the school

Photograph 27. Example of a south-facing dormer window in the enclosed roof void within the main part of the school

Photograph 28. Example of accumulated dust on the floor of the enclosed roof void within the south wing

Photograph 29. Example of accumulated dust on a purlin in the enclosed roof void within the main part of the school

Photograph 30. The east-facing part of the school to which the proposed two-storey extension will join
Photograph 31. The north-facing part of the school to which the proposed first-storey extension will join

Photograph 32. Vegetation above Swanspool Brook along the southern boundary of the site