Northamptonshire Minerals and Waste Local Plan Update
Proposed Modifications to Submitted Plan

As of 25 November 2016

AM1-AM17: Proposed Modifications related to addressing matters raised at proposed submission stage.
AM18-AM23: Proposed Modifications related to addressing issues raised by Matters and Issues questions for the public hearing sessions.

<table>
<thead>
<tr>
<th>Ref</th>
<th>Part</th>
<th>Change</th>
<th>Reason for Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM1</td>
<td>After Policy 29 add new paragraph</td>
<td>After Policy 29 add new paragraph: It should be noted that within Northamptonshire Safeguarding Directions have been made by Secretary of State for Transport relating to the HS2 safeguarding area, which runs diagonally through the South Northamptonshire district council area (north-east of Brackley to west of Upper Boddington), shown in the Policies Map.</td>
<td>To aid clarity.</td>
</tr>
<tr>
<td>AM2</td>
<td>Paragraph 2.4</td>
<td>Add new sentence after fourth sentence to paragraph 2.4: National policy context regarding radioactive waste is set out through a number of documents, those of specific relevance to Northamptonshire’s local circumstance address low level radioactive waste, including the Nuclear Decommissioning Authority (NDA) Strategy for Radioactive Waste Management (Strategy III) (effective April 2016), Policy for the Long Term Management of Solid Low Level Radioactive Waste in the United Kingdom (2007) and the UK Strategy for the Management of Solid Low Level Radioactive Waste from the Nuclear Industry (2016).</td>
<td>To aid clarity.</td>
</tr>
<tr>
<td>AM3</td>
<td>Paragraph 5.16</td>
<td>Paragraph 5.16, amend second bullet point to read “Low level waste (LLW) can be disposed of at near surface facilities. LLW can be further categorised into: High Activity Low Level Waste (HALLW) which requires highly engineered containment facilities (e.g. Low Level Waste Repository (LLWR) near Drigg); Low Activity Low Level Waste (LALLW); and Very Low Level Wastes (VLLW) a sub-category of LALLW. Waste at the lower activity range may not require the level of engineering and containment provided by the LLWR and could be disposed</td>
<td>To be amended to reflect the recently updated Strategy and inventory.</td>
</tr>
</tbody>
</table>
of via alternative routes, such as disposal to existing landfill including non-inert landfill (where permitted for such activities).

AM4 Box 3 Box 3 amend to read
“Box 3: Management of radioactive wastes
How radioactive waste is dealt with depends to a large extent on how radioactive it is.
LLW unsuitable for re-use, recycling or incineration is sent to the LLWR in Cumbria or, for wastes with small amounts of radioactivity, to landfill type facilities soon after it is produced. ILW is stored in tanks, vaults and drums, with most waste requiring concrete to shield operators from the radiation; some ILW is being concreted as it arises. HLW is stored as liquid in water-cooled, stainless steel tanks or as glass blocks, and needs thick concrete walls to shield operators from the high radiation.
Many radioactive wastes are treated soon after they arise to reduce their volume and so minimise the requirements for storage. Techniques include compaction and incineration (for solid wastes) and evaporation and filtration (for liquid wastes). Other radioactive wastes are stored untreated.
Wastes may be transported for treatment, packaging, storage and disposal. Transport is usually by road or rail and is subject to strict conditions.
Most (high activity) LLW is sent to LLWR where it is now grouted in metal containers before being stacked in concrete lined, highly engineered vaults. A cap will cover the containers when the vaults are full. Application of the waste hierarchy has encouraged new approaches for managing LLW in a more sustainable way - including incineration, metals recycling and alternative disposal. Authorised landfill sites can accept LLW with very low levels of radioactivity for disposal alongside municipal and commercial wastes. There are strict limitations on how much waste can be disposed of in this way.
Further information on the management of LLW as well as ILW and HLW is detailed on the NDA website.
(Source: NDA 2013 UK Radioactive Waste Inventory https://ukinventory.nda.gov.uk/)

To be amended to reflect the recently updated Strategy and inventory.
<table>
<thead>
<tr>
<th>Ref</th>
<th>Part</th>
<th>Change</th>
<th>Reason for Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM5</td>
<td>Paragraph 5.17</td>
<td>5.17 The UK Radioactive Waste Inventory provides information on radioactive waste and material in stock and estimated future arisings. The inventory also identifies waste arisings from individual sites. Northamptonshire does not produce radioactive waste from the nuclear industry. A survey undertaken by the Department of Energy and Climate Change (DECC) in 2008, Data Collection on Solid Low Level Radioactive Waste from the Non-nuclear Sector, indicated that Northamptonshire produced 34 m3 of LALLW from the non-nuclear industry.</td>
<td>To be amended to reflect the recently updated Strategy and inventory.</td>
</tr>
<tr>
<td>AM6</td>
<td>Paragraph 5.18</td>
<td>5.18 Although LLW makes up the majority (approximately 94%) of the UK's total volume of radioactive waste it contains only a very small amount of the total radioactivity (less than 0.01%) (NDA 2013). The majority of the UK's solid LLW is disposed of at the LLWR. This site does not have the capacity to meet future needs. The useful lifetime of this site could be extended by using other approaches for managing waste at the lower end of the LLW activity range (such as incineration, metals recycling and alternative disposal).</td>
<td>To be amended to reflect the recently updated Strategy and inventory.</td>
</tr>
<tr>
<td>AM7</td>
<td>Paragraph 5.19</td>
<td>5.19 The predicted volume of LLW arising between 2016 - 2030 is 289,420 m3, with an additional 90,000 m3 of VLLW (average of 6,000 m3 per annum) in the period up to 2030; totalling approximately 379,420 m3 (NDA 2013). The majority of this would be building rubble, soil and steel items from decommissioning of existing reactors and other facilities and site remediation. It is estimated that total UK arisings from the non-nuclear industry are very unlikely to exceed 100,000 m3 per year; survey results suggest that the majority of this can be attributed to the medical and research sectors. NORM waste arising from the oil and gas industries (e.g. from the decommissioning of oil and gas rigs) is currently not quantified but could arise for disposal in the future.</td>
<td>To be amended to reflect the recently updated Strategy and inventory.</td>
</tr>
<tr>
<td>AM8</td>
<td>Paragraph 5.23</td>
<td>Delete second sentence of para 5.23.</td>
<td>No longer relevant as site has extant permission.</td>
</tr>
<tr>
<td>AM9</td>
<td>Paragraph 5.69</td>
<td>Amend paragraph 5.69: “... compliance with relevant policies of this Local Plan, particularly Policy 18 (note that Policy 12 does not apply to sewage and waste water treatment).”</td>
<td>To aid clarity.</td>
</tr>
<tr>
<td>AM10</td>
<td>Paragraph 5.88</td>
<td>Amend para 5.88: LLW can be managed via alternative routes (i.e. other than the</td>
<td>To be amended to reflect the recently updated Strategy and inventory.</td>
</tr>
</tbody>
</table>

LLWR at Drigg), the Policy for the Long Term Management of Solid Low Level Radioactive Waste in the United Kingdom (2007) allows for the disposal of some types of LLW to landfill, including: controlled burials of LLW and high volume very low level waste (VLLW). VLLW is a sub-category of LLW. Such landfills could include non-inert landfill, the disposal of such waste to landfill is regulated by the EA under the Environmental Permitting Regulations. The Policy for LLW 2007 sets out the need for early, transparent and iterative engagement with communities which may be impacted (including any host community in the vicinity of a treatment or disposal facility) during the preparation of the nuclear site(s) waste management plan. The UK Strategy for the Management of Solid Low Level Radioactive Waste from the Nuclear Industry 2016 identifies a set of key principles, central to which are the development of appropriate LLW management plans, implementation of the waste hierarchy, application of Best Available Techniques (BAT), appropriate engagement with stakeholders, availability of robust information to support decision making, regulation, development of new routes/approaches to LLW management and the availability of infrastructure. The Strategy recognises that it is essential to undertake careful and considered engagement with local communities early in the waste management planning and decision making process, particularly where the implementation of this strategy leads to proposals for new waste management facilities or changes in the approach to LLW management. Such engagement needs to be open and transparent in order to build confidence and credibility. The Strategy also outlines sharing of this responsibility between organisations involved in the implementation of the Strategy. The Local Plan supports the national policy direction.

<table>
<thead>
<tr>
<th>Ref</th>
<th>Part</th>
<th>Change</th>
<th>Reason for Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM11</td>
<td>Paragraph 5.89</td>
<td>Amend para 5.89: BAT is a key principle of the European Union Industrial Emissions Directive 2010/75, the UK Strategy for LLW and is a requirement of the Environmental Permitting process.</td>
<td>To be amended to reflect the recently updated Strategy and inventory.</td>
</tr>
<tr>
<td>AM12</td>
<td>Appendix 1</td>
<td>Appendix 1 – Amend listing under Allocations for minerals-related development Policy 4: Sites for the provision of sand and gravel to refer to: M6: Passenham Extension East (delete "West")</td>
<td>To amend typographical error.</td>
</tr>
<tr>
<td>Ref</td>
<td>Part</td>
<td>Change</td>
<td>Reason for Change</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>AM13</td>
<td>Appendix 1</td>
<td>Amend site profile for M5 and M6 to include (under Development requirements) “Transport assessment required to accompany planning application.”</td>
<td>To better clarify development requirements.</td>
</tr>
<tr>
<td>AM14</td>
<td>Appendix 1</td>
<td>Amend site profile M5 (site characteristics) to refer to Deanshanger Gravel Pits Local Wildlife Site (delete reference to Kingfisher CWS). Amend site profile M5 (development requirements) to refer to LWS (delete reference to CWS).</td>
<td>Reference made to an old dataset. Amendments made to correct reference to County Wildlife Site.</td>
</tr>
<tr>
<td>AM15</td>
<td>Appendix 1</td>
<td>Amend site profile M6 (development requirements) to refer to LWS (delete reference to CWS).</td>
<td>Reference made to an old dataset. Amendments made to correct reference to County Wildlife Site.</td>
</tr>
<tr>
<td>AM16</td>
<td>Glossary</td>
<td>Amend definition of BAT to read “BAT - Defined (using the definition in article 2 of the Pollution Prevention & Control (PPC) Directive) as the most effective and advanced stage in the development of activities and their methods of operation, which indicates the practical suitability of particular techniques for providing, in principle, the basis for emission limit values designed to prevent and, where that is not practicable, generally to reduce emissions and impact on the environment as a whole. The OECD definition of BAT is best available technology; which is taken to mean the latest stage of development (state of the art) of processes, of facilities or of methods of operation which indicate the practical suitability of a particular measure for limiting discharges. The BAT NICOP defines Best Available Techniques (BAT) as the latest stage of development of processes, facilities or methods of operation which indicate the practical suitability of a particular measure for limiting waste arisings and disposal. In determining what constitutes BAT consideration shall be given to: 1. comparable processes, facilities or methods which have been tried out successfully 2. technological advances and changes in scientific knowledge and understanding 3. the economic feasibility of such techniques 4. time limits for installation in both new and existing plants 5. the nature and volume of the disposals concerned It follows that BAT will change with time in the light of...”</td>
<td>To be amended to reflect the recently updated Strategy and inventory.</td>
</tr>
<tr>
<td>Ref</td>
<td>Part</td>
<td>Change</td>
<td>Reason for Change</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>--------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| AM17 | Glossary | Add definition of LLW
“LLW – Radioactive waste that includes metals, soil, building rubble and organic materials, which arise principally as lightly contaminated miscellaneous waste. Metals are mostly in the form of redundant equipment. Organic materials are mainly in the form of paper towels, clothing and laboratory equipment that have been used in areas where radioactive materials are used – such as hospitals, research establishments and industry. LLW contains radioactive materials other than those acceptable for disposal with municipal and general commercial or industrial waste. It is defined as: “radioactive waste having a radioactive content not exceeding four gigabecquerels per tonne (GBq/te) of alpha or 12 GBq/te of beta/gamma radioactivity”.”
Add definition of VLLW
“Covers waste with very low concentrations of radioactivity. It arises from a variety of sources, including hospitals and the wider non-nuclear industry. Because VLLW contains little total radioactivity, it has been safely treated by various means, such as disposal with municipal and general commercial and industrial waste directly at landfill sites or indirectly after incineration. Its formal definition is:
(a) in the case of low volumes (‘dustbin loads’) of VLLW “Radioactive waste which can be safely disposed of to an unspecified destination with municipal, commercial or industrial waste (‘dustbin’ disposal), each 0.1m3 of waste containing less than 400 kilobecquerels (kBq) of total activity or single items containing less than 40 kBq of total activity. For wastes containing carbon-14 or hydrogen-3 (tritium): (i) in each 0.1m3, the activity limit is 4,000 kBq for carbon-14 and hydrogen-3 (tritium) taken together; (ii) for any single item, the activity limit is 400 kBq for carbon-14 and hydrogen-3 (tritium) taken together. Controls on disposal of this material, after removal from the premises where the wastes arose, are not necessary.
(b) in the case of high volumes of VLLW “Radioactive waste with maximum concentrations of four megabecquerels per tonne (MBq/te) of total activity which can be disposed of to specified | To be amended to reflect the recently updated Strategy and inventory.
<table>
<thead>
<tr>
<th>Ref</th>
<th>Part</th>
<th>Change</th>
<th>Reason for Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>landfill sites. For waste containing hydrogen-3 (tritium), the concentration limit for tritium is 40MBq/te. Controls on disposal of this material, after removal from the premises where the wastes arose, will be necessary in a manner specified by the environmental regulators.</td>
<td></td>
</tr>
<tr>
<td>AM18</td>
<td>Para 4.6</td>
<td>After 2nd sentence amend text to read: The permission at Wakerley may assist in addressing this imbalance regarding crushed rock. Notwithstanding this more allocations are identified in the plan than is required to meet the plans total provision. Any shortfall between the provision rates and demand required to meet growth should firstly look to within the county in line with the Local Plan policies and then to imports from other authorities.</td>
<td>Reflect removal of Wakerley as an allocation due to issue of planning permission and intent of industry to commence works in early part of the plan period.</td>
</tr>
<tr>
<td>AM19</td>
<td>Para 4.21</td>
<td>Amend last two sentences to read: Planning permission for the Wakerley site was issued in December 2015 following signing of the S106 agreement. The site has a ten year implementation period from issue of planning permission. The estimated yield from this site is 11.25 Mt, with 6 Mt expected to be extracted up to 2041.</td>
<td>Reflect removal of Wakerley as an allocation due to issue of planning permission and intent of industry to commence works in early part of the plan period.</td>
</tr>
<tr>
<td>AM20</td>
<td>Para 4.25 – Footnote 5</td>
<td>Amend footnote to read: 6 Mt from the Wakerley site has been included in calculations as, although the estimated yield from this site is 11.25 Mt, it is thought that 6 Mt of this will be extracted up to 2041.</td>
<td>Reflect removal of Wakerley as an allocation due to issue of planning permission and intent of industry to commence works in early part of the plan period.</td>
</tr>
<tr>
<td>AM21</td>
<td>Para 4.46</td>
<td>Delete paragraph.</td>
<td>Reflect removal of Wakerley as an allocation due to issue of planning permission and intent of industry to commence works in early part of the plan period.</td>
</tr>
<tr>
<td>AM22</td>
<td>Policy 5</td>
<td>Delete: M8: Wakerley 6 million tonnes (approximately) to 2041 (5.25 million tonnes thereafter) Note: References for allocated sites M9, M10, M11 will be amended to M8, M9 and M10 throughout the document.</td>
<td>Reflect removal of Wakerley as an allocation due to issue of planning permission and intent of industry to commence works in early part of the plan period.</td>
</tr>
<tr>
<td>AM23</td>
<td>Proposals Map</td>
<td>Delete M8 Wakerley as an allocation.</td>
<td>Reflect removal of Wakerley as an allocation due to issue of planning permission and intent of industry to commence works in early part of the plan period.</td>
</tr>
<tr>
<td>AM24</td>
<td>Appendix 1</td>
<td>Amend site profile M6 (development requirements) to delete the</td>
<td>To reflect agreement with Historic England in the Statement of</td>
</tr>
<tr>
<td>Ref</td>
<td>Part</td>
<td>Change</td>
<td>Reason for Change</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>final bullet point and replace with the following:</td>
<td>Common Ground.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Due to the proximity of the allocated site to sensitive receptors in the village of Passenham, any planning application and accompanying site working scheme will need to include a satisfactory site layout (including screening and stand-offs where necessary) and management scheme that clearly demonstrates that it can adequately minimise and mitigate the impacts of the proposed development on nearby sensitive receptors and heritage assets including the properties and land constituting the Passenham Conservation Area.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Further assessment (to accompany the planning application) is required to provide information on the extent and significance of the potential non-designated archaeological assets within the application site, and the impact of the proposals on that significance, prior to determination. The extent of the allocated area proposed for extraction will need to reflect the results of that assessment and therefore the proposed output could be reduced from that set out in Policy 4.</td>
<td></td>
</tr>
</tbody>
</table>